论文标题

人工智能。鲁棒性:以人为中心的技术挑战和机遇的观点

A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities

论文作者

Tocchetti, Andrea, Corti, Lorenzo, Balayn, Agathe, Yurrita, Mireia, Lippmann, Philip, Brambilla, Marco, Yang, Jie

论文摘要

尽管人工智能(AI)系统的表现令人印象深刻,但它们的鲁棒性仍然难以捉摸,构成了阻碍大规模采用的关键问题。鲁棒性已在AI的许多领域中进行了研究,但在跨领域和环境之间进行了不同的解释。在这项工作中,我们系统地调查了最近的进展,以提供围绕AI鲁棒性的概念的和解术语。我们介绍了三种分类法,以从基本和应用的观点组织和描述文献:1)通过机器学习管道不同阶段的方法和方法的鲁棒性; 2)特定模型架构,任务和系统的鲁棒性;此外,3)鲁棒性评估方法和见解,尤其是具有其他可信赖性能的权衡。最后,我们确定并讨论研究差距和机会,并在该领域提供前景。我们强调了人类在评估和增强AI鲁棒性方面的核心作用,考虑到人类可以提供的必要知识,并讨论了将来更好地理解实践和开发支持工具的必要性。

Despite the impressive performance of Artificial Intelligence (AI) systems, their robustness remains elusive and constitutes a key issue that impedes large-scale adoption. Robustness has been studied in many domains of AI, yet with different interpretations across domains and contexts. In this work, we systematically survey the recent progress to provide a reconciled terminology of concepts around AI robustness. We introduce three taxonomies to organize and describe the literature both from a fundamental and applied point of view: 1) robustness by methods and approaches in different phases of the machine learning pipeline; 2) robustness for specific model architectures, tasks, and systems; and in addition, 3) robustness assessment methodologies and insights, particularly the trade-offs with other trustworthiness properties. Finally, we identify and discuss research gaps and opportunities and give an outlook on the field. We highlight the central role of humans in evaluating and enhancing AI robustness, considering the necessary knowledge humans can provide, and discuss the need for better understanding practices and developing supportive tools in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源