论文标题
最佳探索材料的最佳热电效率
Best Thermoelectric Efficiency of Ever-Explored Materials
论文作者
论文摘要
热电设备是直接将热量转换为电力的热发动机。由于预期高热电效率,已经发现了许多具有高功绩ZT的材料。但是,缺乏对基于效率的材料评估的研究,对热电效率的可实现极限知之甚少。在这里,我们报告了使用12,645种发布材料的热电效率最高的。当冷侧温度为300 K时,使用808,610个设备配置计算97,841,810热电效率,使用808,610个设备配置,求解具有温度依赖性热电学特性的一维热电积分方程。对于Infinite-Cascade设备,当T_H超过1400 K时,可以实现大于33%(〜1/3)的热电效率。对于单级设备,最佳效率为17.1%(〜1/6)时,当T_H是860 K.腿部段为860 K.腿部段时,可以克服此限制,从而可以克服此限制,从而使IS高效率为1100 k时,当24%(〜1/4)时(〜1/4)(〜1/4)(〜1/4)。
A thermoelectric device is a heat engine that directly converts heat into electricity. Many materials with a high figure of merit ZT have been discovered in anticipation of a high thermoelectric efficiency. However, there has been a lack of investigations on efficiency-based material evaluation, and little is known about the achievable limit of thermoelectric efficiency. Here, we report the highest thermoelectric efficiency using 12,645 published materials. The 97,841,810 thermoelectric efficiencies are calculated using 808,610 device configurations under various heat-source temperatures (T_h) when the cold-side temperature is 300 K, solving one-dimensional thermoelectric integral equations with temperature-dependent thermoelectric properties. For infinite-cascade devices, a thermoelectric efficiency larger than 33% (~1/3) is achievable when T_h exceeds 1400 K. For single-stage devices, the best efficiency of 17.1% (~1/6) is possible when T_h is 860 K. Leg segmentation can overcome this limit, delivering a very high efficiency of 24% (~1/4) when T_h is 1100 K.