论文标题

爆炸的离散玻尔兹曼建模:基于Shakhov模型

Discrete Boltzmann modeling of detonation: based on the Shakhov model

论文作者

Shan, Yiming, Xu, Aiguo, Zhang, Yudong, Wang, Lifeng, Chen, Feng

论文摘要

提出了基于Shakhov模型的爆炸模型的离散Boltzmann模型(DBM)。与基于Bhatnagar-Gross-Krook(BGK)模型的DBM相比,当前模型具有灵活的PrandTL数字,因此可以应用于更广泛的爆炸现象。除了通常由Navier-Stokes模型研究的流体动力非平衡(HNE)行为外,最相关的热力学非平衡(TNE)效应可以通过当前模型探测。该模型通过一些众所周知的基准验证,并研究了一些稳定且不稳定的爆炸过程。至于冯·诺伊曼(Von Neumann)相对于波浪阵线的峰值,发现(i)(在数值实验范围内)压力,密度和流速速度的峰值随prandtl数量指数增长而增加,最大压力随着PrandTL的数量而寄生,最大热量随着Prandtl的数量而降低。 (ii)压力,密度,温度和流速度的峰高以及峰内的最大应力随着马赫数而抛物面增加,最大热通量随着马赫数而成倍地降低。

A Discrete Boltzmann Model(DBM) based on the Shakhov model for detonation is proposed. Compared with the DBM based on the Bhatnagar-Gross-Krook (BGK) model, the current model has a flexible Prandtl numbers and consequently can be applied to a much wider range of detonation phenomena. Besides the Hydrodynamic Non-Equilibrium (HNE) behaviors usually investigated by the Navier-Stokes model, the most relevant Thermodynamic Non-Equilibrium (TNE) effects can be probed by the current model. The model is validated by some well-known benchmarks,and some steady and unsteady detonation processes are investigated. As for the von Neumann peak relative to the wave front, it is found that (i) (within the range of numerical experiments) the peak heights of pressure, density and flow velocity increase exponentially with the Prandtl number, the maximum stress increases parabolically with the Prandtl number, and the maximum heat flux decreases exponentially with the Prandtl number; (ii) the peak heights of pressure, density, temperature and flow velocity and the maximum stress within the peak are parabolically increase with the Mach number, the maximum heat flux decreases exponentially with the Mach number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源