论文标题
基于LSTM交通预测,5G Open超越5G开放的智能交通转向
Intelligent Traffic Steering in Beyond 5G Open RAN based on LSTM Traffic Prediction
论文作者
论文摘要
开放无线电访问网络(ORAN)联盟提供了使用块之间的开放接口规格构建的分类RAN功能。为了有效地支持各种竞争服务,\ textIt {即增强了移动宽带(EMBB)和非常可靠和低延迟(URLLC),奥兰联盟(Oran Alliance)引入了一种标准方法,以实现更虚拟化,开放和智能的网络。为了实现奥兰在优化资源利用方面的好处,本文研究了拟议的分类Oran架构中的智能交通转向(TS)方案。为此,我们建议在存在未知的动态流量需求的情况下,提出共同的智能交通预测,流程分布,动态用户协会和无线电资源管理(JIFDR)框架。为了适应不同时间尺度的动态环境,我们将公式化的优化问题分解为两个长期和短期子问题,在此,后者的最佳性在很大程度上取决于最佳的动态交通需求。然后,我们应用长期记忆(LSTM)模型来有效地解决长期子问题,旨在预测动态的交通需求,进行切片和流程分解决策。通过利用连续的凸近似值,将所得的非凸短期子问题转换为更计算的形式。最后,提供了模拟结果,以证明与几种众所周知的基准方案相比,提出的算法的有效性。
Open radio access network (ORAN) Alliance offers a disaggregated RAN functionality built using open interface specifications between blocks. To efficiently support various competing services, \textit{namely} enhanced mobile broadband (eMBB) and ultra-reliable and low-latency (uRLLC), the ORAN Alliance has introduced a standard approach toward more virtualized, open and intelligent networks. To realize benefits of ORAN in optimizing resource utilization, this paper studies an intelligent traffic steering (TS) scheme within the proposed disaggregated ORAN architecture. For this purpose, we propose a joint intelligent traffic prediction, flow-split distribution, dynamic user association and radio resource management (JIFDR) framework in the presence of unknown dynamic traffic demands. To adapt to dynamic environments on different time scales, we decompose the formulated optimization problem into two long-term and short-term subproblems, where the optimality of the later is strongly dependent on the optimal dynamic traffic demand. We then apply a long-short-term memory (LSTM) model to effectively solve the long-term subproblem, aiming to predict dynamic traffic demands, RAN slicing, and flow-split decisions. The resulting non-convex short-term subproblem is converted to a more computationally tractable form by exploiting successive convex approximations. Finally, simulation results are provided to demonstrate the effectiveness of the proposed algorithms compared to several well-known benchmark schemes.