论文标题

隐式神经表示的信号处理

Signal Processing for Implicit Neural Representations

论文作者

Xu, Dejia, Wang, Peihao, Jiang, Yifan, Fan, Zhiwen, Wang, Zhangyang

论文摘要

通过多层感知器编码连续多媒体数据的隐式神经表示(INRS)在各种计算机视觉任务中都表现出了不可思议的承诺。尽管有许多成功的应用程序,但编辑和处理INR仍然很棘手,因为信号由神经网络的潜在参数表示。现有作品通过处理其离散实例来操纵这种连续的表示,这破坏了INR的紧凑性和连续性。在这项工作中,我们介绍了一个试点研究:如何在不明确解码的情况下直接修改INR?我们通过在INR上提出一个被称为INSP-NET的隐式神经信号处理网络来回答这个问题。我们的关键见解是,可以通过分析来计算神经网络的空间梯度,并且是不变的,而在数学上我们表明,任何连续的卷积滤波器都可以通过高阶差异操作员的线性组合统一地近似。使用这两个旋钮,Insp-Net将信号处理操作员实例化为与INRS高阶导数相对应的计算图的加权组成,可以在其中学习加权参数。根据我们提出的INSP-NET,我们进一步构建了一个隐式运行的INRS,名为Insponvnet的第一个卷积神经网络(CNN)。我们的实验验证了INSP-NET和INSP-CONVNET在拟合低级图像和几何处理内核(例如模糊,去皮,脱氧,脱氧,内化和平滑的模糊)以及对隐式领域的高级任务(例如图像分类)上的高级任务的表达性。

Implicit Neural Representations (INRs) encoding continuous multi-media data via multi-layer perceptrons has shown undebatable promise in various computer vision tasks. Despite many successful applications, editing and processing an INR remains intractable as signals are represented by latent parameters of a neural network. Existing works manipulate such continuous representations via processing on their discretized instance, which breaks down the compactness and continuous nature of INR. In this work, we present a pilot study on the question: how to directly modify an INR without explicit decoding? We answer this question by proposing an implicit neural signal processing network, dubbed INSP-Net, via differential operators on INR. Our key insight is that spatial gradients of neural networks can be computed analytically and are invariant to translation, while mathematically we show that any continuous convolution filter can be uniformly approximated by a linear combination of high-order differential operators. With these two knobs, INSP-Net instantiates the signal processing operator as a weighted composition of computational graphs corresponding to the high-order derivatives of INRs, where the weighting parameters can be data-driven learned. Based on our proposed INSP-Net, we further build the first Convolutional Neural Network (CNN) that implicitly runs on INRs, named INSP-ConvNet. Our experiments validate the expressiveness of INSP-Net and INSP-ConvNet in fitting low-level image and geometry processing kernels (e.g. blurring, deblurring, denoising, inpainting, and smoothening) as well as for high-level tasks on implicit fields such as image classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源