论文标题

地热门:地热资源探索的机器学习

GeoThermalCloud: Machine Learning for Geothermal Resource Exploration

论文作者

Mudunuru, Maruti K., Vesselinov, Velimir V., Ahmmed, Bulbul

论文摘要

本文提出了一种基于ML的新方法,用于对PFA应用的地热探索。我们的方法是通过我们的开源ML框架,GeotherMalCloud \ url {https://github.com/smarttensors/geothermalcloud.jl}提供的。 GeothermalCloud使用SmartTensors AI Platform \ url {https://github.com/smarttensors}中提供的一系列无监督,监督和物理信息的ML方法。在这里,介绍的分析是使用我们的无监督的ML算法(NMF $ K $)进行的,该算法可在SmartTensors AI平台中获得。我们的ML算法有助于发现新现象,隐藏模式和机制,从而帮助我们做出明智的决定。此外,GeotherMalCloud增强了收集的PFA数据,并发现了代表地热资源的签名。通过GeotermalCloud,我们可以在有效发现盲目系统所需的地热字段数据中识别隐藏的模式。传统PFA中通常忽略的关键地热特征是使用地热曲面提取的,并由主题专家分析以提供ML增强的PFA,这对于有效的探索提供了信息。我们将ML方法应用于美国境内的各种开源地热数据集(其中一些是通过过去的PFA工作收集的)。结果为这些区域内的资源类型提供了宝贵的见解。这种ML增强的工作流程使地热社区的地热熟练吸引了改善现有数据集并提取在地热探索期间通常没有注意到的有价值的信息。

This paper presents a novel ML-based methodology for geothermal exploration towards PFA applications. Our methodology is provided through our open-source ML framework, GeoThermalCloud \url{https://github.com/SmartTensors/GeoThermalCloud.jl}. The GeoThermalCloud uses a series of unsupervised, supervised, and physics-informed ML methods available in SmartTensors AI platform \url{https://github.com/SmartTensors}. Here, the presented analyses are performed using our unsupervised ML algorithm called NMF$k$, which is available in the SmartTensors AI platform. Our ML algorithm facilitates the discovery of new phenomena, hidden patterns, and mechanisms that helps us to make informed decisions. Moreover, the GeoThermalCloud enhances the collected PFA data and discovers signatures representative of geothermal resources. Through GeoThermalCloud, we could identify hidden patterns in the geothermal field data needed to discover blind systems efficiently. Crucial geothermal signatures often overlooked in traditional PFA are extracted using the GeoThermalCloud and analyzed by the subject matter experts to provide ML-enhanced PFA, which is informative for efficient exploration. We applied our ML methodology to various open-source geothermal datasets within the U.S. (some of these are collected by past PFA work). The results provide valuable insights into resource types within those regions. This ML-enhanced workflow makes the GeoThermalCloud attractive for the geothermal community to improve existing datasets and extract valuable information often unnoticed during geothermal exploration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源