论文标题

使用基于功能的坐标网络,MRI中的比例尺不可屈服的超分辨率

Scale-Agnostic Super-Resolution in MRI using Feature-Based Coordinate Networks

论文作者

Van Veen, Dave, van der Sluijs, Rogier, Ozturkler, Batu, Desai, Arjun, Bluethgen, Christian, Boutin, Robert D., Willis, Marc H., Wetzstein, Gordon, Lindell, David, Vasanawala, Shreyas, Pauly, John, Chaudhari, Akshay S.

论文摘要

我们建议使用坐标网络解码器完成MRI超级分辨率的任务。坐标网络的连续信号表示可以使这种方法具有比例 - 敏捷性,即可以在连续的尺度范围内训练,然后以任意分辨率进行查询。由于难以对固有的嘈杂数据执行超分辨率,因此我们在多种降级策略下分析了网络行为。最后,我们将此方法与使用定量指标和Voxel中实施的放射科医生研究(我们新开发的用于基于网络的医学图像评估的工具)进行了比较。

We propose using a coordinate network decoder for the task of super-resolution in MRI. The continuous signal representation of coordinate networks enables this approach to be scale-agnostic, i.e. one can train over a continuous range of scales and subsequently query at arbitrary resolutions. Due to the difficulty of performing super-resolution on inherently noisy data, we analyze network behavior under multiple denoising strategies. Lastly we compare this method to a standard convolutional decoder using both quantitative metrics and a radiologist study implemented in Voxel, our newly developed tool for web-based evaluation of medical images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源