论文标题

迈向更有效的共享自主流动性:一种基于学习的机队重新定位方法

Towards More Efficient Shared Autonomous Mobility: A Learning-Based Fleet Repositioning Approach

论文作者

Filipovska, Monika, Hyland, Michael, Bala, Haimanti

论文摘要

共享使用的自主移动服务(SAMS)为改善可访问和需求响应的移动性提供了新的机会。 SAMS面临的基本挑战是适当地定位闲置车队以满足未来需求 - 这一问题会严重影响服务质量和效率。本文将SAMS机队重新定位作为马尔可夫决策过程,并提出了一种基于增强学习的重新定位(RLR)方法,称为集成系统代理重新定位(ISR)。 ISR以综合的方式学习了可扩展的机队重新定位策略:学会在没有明确需求预测的情况下响应不断发展的需求模式,并与基于优化的乘客到车辆的分配合作。使用纽约市出租车数据和基于代理的仿真工具进行数值实验。将ISR与称为外部引导重新定位(EGR)的替代RLR方法和用于乘客到车辆分配和重新定位的基准关节优化(JO)。结果表明,相对于JO方法,RLR的乘客等待时间大大减少了50%。 ISR的绕过需求预测的能力也已被证明,因为它在平均指标方面保持了与EGR可比的性能。结果还证明了该模型向不断发展的条件的转移性,包括看不见的需求模式,延长的操作周期以及分配策略的变化。

Shared-use autonomous mobility services (SAMS) present new opportunities for improving accessible and demand-responsive mobility. A fundamental challenge that SAMS face is appropriate positioning of idle fleet vehicles to meet future demand - a problem that strongly impacts service quality and efficiency. This paper formulates SAMS fleet repositioning as a Markov Decision Process and presents a reinforcement learning-based repositioning (RLR) approach called integrated system-agent repositioning (ISR). The ISR learns a scalable fleet repositioning strategy in an integrated manner: learning to respond to evolving demand patterns without explicit demand forecasting and to cooperate with optimization-based passenger-to-vehicle assignment. Numerical experiments are conducted using New York City taxi data and an agent-based simulation tool. The ISR is compared to an alternative RLR approach named externally guided repositioning (EGR) and a benchmark joint optimization (JO) for passenger-to-vehicle assignment and repositioning. The results demonstrate the RLR approaches' substantial reductions in passenger wait times, over 50%, relative to the JO approach. The ISR's ability to bypass demand forecasting is also demonstrated as it maintains comparable performance to EGR in terms of average metrics. The results also demonstrate the model's transferability to evolving conditions, including unseen demand patterns, extended operational periods, and changes in the assignment strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源