论文标题

平面分区功能的较高的Turán不平等

Higher Turán inequalities for the plane partition function

论文作者

Pandey, Badri Vishal

论文摘要

在这里,我们研究Jensen多项式的双属无限家族的根源$ J _ {\ Mathrm {pl}}}}^{d,n}(x)$与MacMahon的平面分区函数$ \ mathrm {pl}(pl}(n)$相关。最近,Ono,Pujahari和Rolen证明了$ \ Mathrm {pl}(n)$是所有$ n \ geq 12 $的log-concave,这等同于多项式$ j _ {\ j _ {\ mathrm {pl}}}}}}^{2,n}(x,x)(x)(x)$。此外,他们证明,对于每个$ d \ geq 2 $,$ j _ {\ mathrm {pl}}}}^{d,n}(x)$都具有足够大的$ n $。在这里,我们使他们的结果有效。也就是说,如果$ n _ {\ mathrm {pl}}(d)$是最小整数,以至于$ j _ {\ mathrm {pl}}}}^{d,n}(x)$在所有$ n \ geq n _ _ { $ n _ {\ mathrm {pl}}(d)\ leq 279928 \ cdot d(d-1)\ cdot \ left(6 d^3 \ cdot(22.2)^{\ frac {3(3(d-1)} e^{\ frac {γ(2d^2)} {(2π)^{2d+2}}}。 n _ {\ Mathrm {pl}}(5)= 73,n _ {\ Mathrm {pl}}}(6)= 102 $和$ n _ {\ Mathrm {pl}}}(7)= 136 $。

Here we study the roots of the doubly infinite family of Jensen polynomials $J_{\mathrm{PL}}^{d,n}(x)$ associated to MacMahon's plane partition function $\mathrm{PL}(n)$. Recently, Ono, Pujahari, and Rolen proved that $\mathrm{PL}(n)$ is log-concave for all $n\geq 12$, which is equivalent to the polynomials $J_{\mathrm{PL}}^{2,n}(x)$ having real roots. Moreover, they proved, for each $d\geq 2$, that the $J_{\mathrm{PL}}^{d,n}(x)$ have all real roots for sufficiently large $n$. Here we make their result effective. Namely, if $N_{\mathrm{PL}}(d)$ is the minimal integer such that $J_{\mathrm{PL}}^{d,n}(x)$ has all real roots for all $n\geq N_{\mathrm{PL}}(d)$, then we show that $$N_{\mathrm{PL}}(d)\leq 279928\cdot d(d-1)\cdot \left(6 d^3\cdot (22.2)^{\frac{3(d-1)}{2}}\right)^{2d} e^{\frac{Γ(2d^2)}{(2π)^{2d+2}}} .$$ Moreover, using the ideas that led to the above inequality, we explicitly prove that $N_{\mathrm{PL}}(3)=26, N_{\mathrm{PL}}(4)=46, N_{\mathrm{PL}}(5)=73, N_{\mathrm{PL}}(6)=102$ and $N_{\mathrm{PL}}(7)=136$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源