论文标题
有限或有偏见:在金融市场中建模人类投资者
Limited or Biased: Modeling Sub-Rational Human Investors in Financial Markets
论文作者
论文摘要
现实生活中的人类决策明显偏离完全理性代理的最佳决策,这主要是由于计算局限性或心理偏见。尽管在行为金融方面的现有研究发现了人类次理性的各个方面,但缺乏将这些发现转移到适用于各种金融市场场景中的自适应人类模型中的全面框架。在这项研究中,我们介绍了一个灵活的模型,该模型结合了使用强化学习的五个不同方面。我们的模型是使用高保真性多代理市场模拟器进行培训的,该模拟器克服了与个人投资者标记的数据稀缺有关的限制。我们使用手工制作的市场场景和塑造价值分析评估了次理性人类投资者的行为,这表明我们的模型可以准确地重现先前研究中的观察结果,并揭示了人类行为驱动因素的见解。最后,我们探讨了次理性对投资者损益(PNL)和市场质量的影响。我们的实验表明,有限的理性和前景偏见的人类行为可以提高流动性,但价格降低了价格效率,而人类行为受近视,乐观和悲观主义影响降低了市场流动性。
Human decision-making in real-life deviates significantly from the optimal decisions made by fully rational agents, primarily due to computational limitations or psychological biases. While existing studies in behavioral finance have discovered various aspects of human sub-rationality, there lacks a comprehensive framework to transfer these findings into an adaptive human model applicable across diverse financial market scenarios. In this study, we introduce a flexible model that incorporates five different aspects of human sub-rationality using reinforcement learning. Our model is trained using a high-fidelity multi-agent market simulator, which overcomes limitations associated with the scarcity of labeled data of individual investors. We evaluate the behavior of sub-rational human investors using hand-crafted market scenarios and SHAP value analysis, showing that our model accurately reproduces the observations in the previous studies and reveals insights of the driving factors of human behavior. Finally, we explore the impact of sub-rationality on the investor's Profit and Loss (PnL) and market quality. Our experiments reveal that bounded-rational and prospect-biased human behaviors improve liquidity but diminish price efficiency, whereas human behavior influenced by myopia, optimism, and pessimism reduces market liquidity.