论文标题

模棱两可的量子神经网络的理论

Theory for Equivariant Quantum Neural Networks

论文作者

Nguyen, Quynh T., Schatzki, Louis, Braccia, Paolo, Ragone, Michael, Coles, Patrick J., Sauvage, Frederic, Larocca, Martin, Cerezo, M.

论文摘要

众所周知,几乎没有归纳偏见的量子神经网络体系结构面临训练性和泛化问题。受类似问题的启发,机器学习中的最新突破通过创建编码学习任务对称的模型来解决这一挑战。这是通过使用e夫神经网络的使用来实现的,这些神经网络的作用与对称性的动作通勤。在这项工作中,我们通过提出一个全面的理论框架来设计量像量量子神经网络(EQNN),以实现任何相关的对称群体,将这些想法导入量子领域。我们开发了多种方法来构建eqnns的层次层并分析其优势和缺点。即使对称组成倍大或连续,我们的方法也可以有效地找到统一或一般的量子量子通道。作为一个特殊的实施,我们展示了标准量子卷积神经网络(QCNN)如何推广到群体等级的QCNN,其中卷积和合并层都与对称组相等。然后,我们在数值上证明了SU(2) - 等级QCNN对对称性QCNN的有效性,对键 - 抗偏置的Heisenberg模型中物质阶段的分类任务。我们的框架可以很容易地应用于量子机学习的几乎所有领域。最后,我们讨论了诸如EQNN之类的对称性模型如何减轻核心挑战,例如贫瘠的高原,局部较差的最小值和样本复杂性。

Quantum neural network architectures that have little-to-no inductive biases are known to face trainability and generalization issues. Inspired by a similar problem, recent breakthroughs in machine learning address this challenge by creating models encoding the symmetries of the learning task. This is materialized through the usage of equivariant neural networks whose action commutes with that of the symmetry. In this work, we import these ideas to the quantum realm by presenting a comprehensive theoretical framework to design equivariant quantum neural networks (EQNN) for essentially any relevant symmetry group. We develop multiple methods to construct equivariant layers for EQNNs and analyze their advantages and drawbacks. Our methods can find unitary or general equivariant quantum channels efficiently even when the symmetry group is exponentially large or continuous. As a special implementation, we show how standard quantum convolutional neural networks (QCNN) can be generalized to group-equivariant QCNNs where both the convolution and pooling layers are equivariant to the symmetry group. We then numerically demonstrate the effectiveness of a SU(2)-equivariant QCNN over symmetry-agnostic QCNN on a classification task of phases of matter in the bond-alternating Heisenberg model. Our framework can be readily applied to virtually all areas of quantum machine learning. Lastly, we discuss about how symmetry-informed models such as EQNNs provide hopes to alleviate central challenges such as barren plateaus, poor local minima, and sample complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源