论文标题
CDCONV:中文对话中矛盾检测的基准
CDConv: A Benchmark for Contradiction Detection in Chinese Conversations
论文作者
论文摘要
对话争议是开放域对话系统中的关键问题。对话的上下文化性质使对话构成检测既具有挑战性又具有挑战性。在这项工作中,我们提出了中国对话中矛盾检测的基准,即CDCONV。它包含带有三个典型矛盾类别注释的12K多转向对话:句子内矛盾,角色混乱和历史矛盾。为了有效地构建CDCONV对话,我们设计了一系列自动对话生成的方法,这些方法模拟了触发聊天机器人造成矛盾的常见用户行为。我们对构造的对话进行仔细的手动质量筛选,并表明最先进的中国聊天机器人可以轻松地涉及矛盾。 CDCONV上的实验表明,正确对上下文信息进行适当建模对于对话构成检测至关重要,但是仍有未解决的挑战需要未来的研究。
Dialogue contradiction is a critical issue in open-domain dialogue systems. The contextualization nature of conversations makes dialogue contradiction detection rather challenging. In this work, we propose a benchmark for Contradiction Detection in Chinese Conversations, namely CDConv. It contains 12K multi-turn conversations annotated with three typical contradiction categories: Intra-sentence Contradiction, Role Confusion, and History Contradiction. To efficiently construct the CDConv conversations, we devise a series of methods for automatic conversation generation, which simulate common user behaviors that trigger chatbots to make contradictions. We conduct careful manual quality screening of the constructed conversations and show that state-of-the-art Chinese chatbots can be easily goaded into making contradictions. Experiments on CDConv show that properly modeling contextual information is critical for dialogue contradiction detection, but there are still unresolved challenges that require future research.