论文标题

在Bianchi-Egnell稳定性不平等中的急剧常数

On the sharp constant in the Bianchi-Egnell stability inequality

论文作者

König, Tobias

论文摘要

本说明与bianchi egnell不平等有关,它量化了sobolev不平等的稳定性及其对分数指数的概括$ s \ in(0,\ frac {d} {2} {2})$。我们证明,在尺寸$ d \ geq 2 $中,最佳常数\ [c_ {be}(s)= \ inf_ {f \ in \ dot {h}^s(\ mathbb r^d)\ setMinus \ setMinus \ setMinus \ setMincal m} m} \ frac { r^d)}^2 -s_ {d,s} \ | f \ | _ {l^{2^*}(\ Mathbb r^d)}^2}^2} {\ text {dist} _ {\ dot {\ dot {\ dot {常数$ \ frac {4S} {D+2S+2} $与序列相关联,将sobolev优化器的歧管$ \ Mathcal m $收敛。特别是,$ c_ {be}(s)$无法通过此类序列渐近地实现。我们的证明依赖于BianchiEgnell商的精确扩展,沿精心选择的测试功能融合到$ \ Mathcal M $。

This note is concerned with the Bianchi-Egnell inequality, which quantifies the stability of the Sobolev inequality, and its generalization to fractional exponents $s \in (0, \frac{d}{2})$. We prove that in dimension $d \geq 2$ the best constant \[ c_{BE}(s) = \inf_{f \in \dot{H}^s(\mathbb R^d) \setminus \mathcal M} \frac{\|(-Δ)^{s/2} f\|_{L^2(\mathbb R^d)}^2 - S_{d,s} \|f\|_{L^{2^*}(\mathbb R^d)}^2}{\text{dist}_{\dot{H}^s(\mathbb R^d)}(f, \mathcal M)^2} \] is strictly smaller than the spectral gap constant $\frac{4s}{d+2s+2}$ associated to sequences which converge to the manifold $\mathcal M$ of Sobolev optimizers. In particular, $c_{BE}(s)$ cannot be asymptotically attained by such sequences. Our proof relies on a precise expansion of the Bianchi-Egnell quotient along a well-chosen sequence of test functions converging to $\mathcal M$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源