论文标题

Google通用图像嵌入中的第一名解决方案

1st Place Solution in Google Universal Images Embedding

论文作者

Shao, Shihao, Cui, Qinghua

论文摘要

本文介绍了Google通用图像嵌入Kaggle上的竞争的第一名解决方案。我们解决方案的突出部分是基于1)进行培训和微调的新型方法; 2)在嵌入嵌入的模型池中更好的合奏的想法; 3)在高分辨率和重叠贴片上进行微调之间的潜在权衡; 4)为动态边缘起作用的潜在因素。我们的解决方案在私人领导委员会中达到0.728,该委员会在Google Universal Images嵌入竞赛中获得第一名。

This paper presents the 1st place solution for the Google Universal Images Embedding Competition on Kaggle. The highlighted part of our solution is based on 1) A novel way to conduct training and fine-tuning; 2) The idea of a better ensemble in the pool of models that make embedding; 3) The potential trade-off between fine-tuning on high-resolution and overlapping patches; 4) The potential factors to work for the dynamic margin. Our solution reaches 0.728 in the private leader board, which achieve 1st place in Google Universal Images Embedding Competition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源