论文标题
量子傅里叶变换较小
Quantum Fourier Transform Has Small Entanglement
论文作者
论文摘要
量子傅立叶变换(QFT)是许多重要的量子算法的关键组成部分,最著名的是Shor的算法中的必不可少的成分。鉴于其出色的能力,人们会认为它可以引入量子系统的大纠缠,并且很难经典地模拟。虽然早期结果表明QFT确实具有最大的操作员纠缠,但我们表明这完全是由于QFT中的位逆转。 QFT的核心部分具有schmidt系数的迅速衰减,因此,无论量子数的数量多少,它都只能产生恒定数量的纠缠。此外,我们表明QFT的纠缠能力与具有指数衰减相互作用的哈密顿量的时间演变相同,因此,动态区域定律的变体可用于直观地理解较低的纠缠。使用QFT的低纠缠属性,我们表明具有低键尺寸的矩阵乘积状态上QFT的经典模拟仅在量子数的数量中需要线性,从而在许多类别的功能上对经典快速傅立叶变换(FFT)提供了潜在的加速。我们在一些简单功能的测试计算中演示了这一加速。对于长度为$ 10^6 $至$ 10^8 $的数据向量,加速可能是几个数量级。
The Quantum Fourier Transform (QFT) is a key component of many important quantum algorithms, most famously as being the essential ingredient in Shor's algorithm for factoring products of primes. Given its remarkable capability, one would think it can introduce large entanglement to qubit systems and would be difficult to simulate classically. While early results showed QFT indeed has maximal operator entanglement, we show that this is entirely due to the bit reversal in the QFT. The core part of the QFT has Schmidt coefficients decaying exponentially quickly, and thus it can only generate a constant amount of entanglement regardless of the number of qubits. In addition, we show the entangling power of the QFT is the same as the time evolution of a Hamiltonian with exponentially decaying interactions, and thus a variant of the area law for dynamics can be used to understand the low entanglement intuitively. Using the low entanglement property of the QFT, we show that classical simulations of the QFT on a matrix product state with low bond dimension only take time linear in the number of qubits, providing a potential speedup over the classical fast Fourier transform (FFT) on many classes of functions. We demonstrate this speedup in test calculations on some simple functions. For data vectors of length $10^6$ to $10^8$, the speedup can be a few orders of magnitude.