论文标题
在社交媒体数据上对心理健康的可因果分析
Explainable Causal Analysis of Mental Health on Social Media Data
论文作者
论文摘要
随着社会计算,自然语言处理和临床心理学的最新发展,社会NLP研究社区解决了社交媒体上精神疾病自动化的挑战。对心理健康问题多类分类问题的最新扩展是确定用户意图背后的原因。但是,由于因果解释的重叠问题,社交媒体上精神健康问题的多级因果分类面临错误预测的重大挑战。有两种可能的缓解技术来解决此问题:(i)在数据集中的因果解释/不适当的人类宣传的推论之间,(ii)使用话语分析对自我报告的文本中的论证和立场进行深入分析。在这项研究工作中,我们假设,如果不同阶层的F1分数之间存在不一致的情况,相应的因果解释也必须存在不一致。在此任务中,我们通过石灰和综合梯度(IG)方法在社交媒体上对分类器进行微调并找到对精神疾病多级因果分类的解释。我们使用CAMS数据集测试我们的方法,并用带注释的解释进行验证。这项研究工作的关键贡献是找到多级因果分类准确性不一致的原因。我们的方法的有效性很明显,其结果分别使用余弦相似性和单词Mover的距离获得了类别平均分数为81.29美元\%$和0.906 $的结果。
With recent developments in Social Computing, Natural Language Processing and Clinical Psychology, the social NLP research community addresses the challenge of automation in mental illness on social media. A recent extension to the problem of multi-class classification of mental health issues is to identify the cause behind the user's intention. However, multi-class causal categorization for mental health issues on social media has a major challenge of wrong prediction due to the overlapping problem of causal explanations. There are two possible mitigation techniques to solve this problem: (i) Inconsistency among causal explanations/ inappropriate human-annotated inferences in the dataset, (ii) in-depth analysis of arguments and stances in self-reported text using discourse analysis. In this research work, we hypothesise that if there exists the inconsistency among F1 scores of different classes, there must be inconsistency among corresponding causal explanations as well. In this task, we fine tune the classifiers and find explanations for multi-class causal categorization of mental illness on social media with LIME and Integrated Gradient (IG) methods. We test our methods with CAMS dataset and validate with annotated interpretations. A key contribution of this research work is to find the reason behind inconsistency in accuracy of multi-class causal categorization. The effectiveness of our methods is evident with the results obtained having category-wise average scores of $81.29 \%$ and $0.906$ using cosine similarity and word mover's distance, respectively.