论文标题
与时间依赖的金茨堡 - 陆方方程的广义标量辅助变量方法
A generalized scalar auxiliary variable method for the time-dependent Ginzburg-Landau equations
论文作者
论文摘要
本文为时间依赖的金茨堡 - 兰道方程开发了广义标量辅助变量(SAV)方法。向后的Euler用于离散时间依赖的Ginzburg-Landau方程的时间导数。在此方法中,将系统解耦并线性化,以避免在每个步骤求解非线性方程。理论分析证明,广义SAV方法可以保留最大的结合原理和能量稳定性,这通过数值结果证实。它表明数值算法是稳定的。
This paper develops a generalized scalar auxiliary variable (SAV) method for the time-dependent Ginzburg-Landau equations. The backward Euler is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations. In this method, the system is decoupled and linearized to avoid solving the non-linear equation at each step. The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability, which is confirmed by the numerical results. It shows that the numerical algorithm is stable.