论文标题

针对现场机器人技术自适应实验设计的决策支持系统的分类学

Taxonomy of A Decision Support System for Adaptive Experimental Design in Field Robotics

论文作者

Gregory, Jason M., Al-Hussaini, Sarah, Agha-mohammadi, Ali-akbar, Gupta, Satyandra K.

论文摘要

现场机器人技术中的实验设计是一种自适应的人类在循环决策过程中,实验者通过以构造实验的形式与机器人相互作用来学习系统性能和局限性。由于系统的复杂性,在非结构化环境中运作的需求以及最大化信息增益的目标,同时最大程度地减少实验成本,这可能是具有挑战性的。根据其他领域的成功,我们建议使用决策支持系统(DSS)来扩大人类的决策能力,克服其固有的缺点,并在现场实验中启用原则性决策。在这项工作中,我们提出了常见的术语和DSSS的六阶段分类学,专门用于自适应实验设计,对更翔实的测试和降低实验成本。我们使用DSS文献的示例和趋势来构建并介绍分类法,包括涉及人工智能和智能DSS的作品。最后,我们确定了未来研究的关键技术差距和机会,以指导科学界追求下一代DSSS进行实验设计。

Experimental design in field robotics is an adaptive human-in-the-loop decision-making process in which an experimenter learns about system performance and limitations through interactions with a robot in the form of constructed experiments. This can be challenging because of system complexity, the need to operate in unstructured environments, and the competing objectives of maximizing information gain while simultaneously minimizing experimental costs. Based on the successes in other domains, we propose the use of a Decision Support System (DSS) to amplify the human's decision-making abilities, overcome their inherent shortcomings, and enable principled decision-making in field experiments. In this work, we propose common terminology and a six-stage taxonomy of DSSs specifically for adaptive experimental design of more informative tests and reduced experimental costs. We construct and present our taxonomy using examples and trends from DSS literature, including works involving artificial intelligence and Intelligent DSSs. Finally, we identify critical technical gaps and opportunities for future research to direct the scientific community in the pursuit of next-generation DSSs for experimental design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源