论文标题

SocialMAPF:使用战略代理人进行社会导航的最佳和高效的多代理路径查找

SOCIALMAPF: Optimal and Efficient Multi-Agent Path Finding with Strategic Agents for Social Navigation

论文作者

Chandra, Rohan, Maligi, Rahul, Anantula, Arya, Biswas, Joydeep

论文摘要

我们提出了一个称为SocialMapf的MAPF公式的扩展,以说明在受约束环境(例如门口,狭窄的走廊和走廊交叉点)中的私人激励措施。例如,SocialMAPF能够准确地理由紧急的激励措施,即代理商赶往医院,而不是另一个经纪人不太紧急地去杂货店的动机; MAPF忽略了这种特定于代理的激励措施。我们提出的配方解决了具有私人激励措施的代理商的最佳和有效路径计划的开放问题。为了解决SocialMAPF,我们提出了一种新的算法,这些算法在解决冲突期间使用机制设计,以同时优化代理的私人本地公用事业和全球系统目标。我们执行了广泛的实验,这些实验表明,与使用机制设计相比,与我们提出的方法相比,基于搜索的MAPF技术会导致碰撞和社交时间的时间增加。此外,我们从经验上证明了机制设计导致模型,从而最大化代理效用并最大程度地减少整个系统的总体目标。我们通过成功将其部署在具有静态障碍的环境中,进一步展示了基于机制设计的计划的功能。总而言之,我们使用SocialMAPF公式简要列出了几个研究说明,例如在连续域中为具有私人激励措施的代理商探索运动计划。

We propose an extension to the MAPF formulation, called SocialMAPF, to account for private incentives of agents in constrained environments such as doorways, narrow hallways, and corridor intersections. SocialMAPF is able to, for instance, accurately reason about the urgent incentive of an agent rushing to the hospital over another agent's less urgent incentive of going to a grocery store; MAPF ignores such agent-specific incentives. Our proposed formulation addresses the open problem of optimal and efficient path planning for agents with private incentives. To solve SocialMAPF, we propose a new class of algorithms that use mechanism design during conflict resolution to simultaneously optimize agents' private local utilities and the global system objective. We perform an extensive array of experiments that show that optimal search-based MAPF techniques lead to collisions and increased time-to-goal in SocialMAPF compared to our proposed method using mechanism design. Furthermore, we empirically demonstrate that mechanism design results in models that maximizes agent utility and minimizes the overall time-to-goal of the entire system. We further showcase the capabilities of mechanism design-based planning by successfully deploying it in environments with static obstacles. To conclude, we briefly list several research directions using the SocialMAPF formulation, such as exploring motion planning in the continuous domain for agents with private incentives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源