论文标题

PAR:具有社会环境和专业知识的政治演员代表性学习

PAR: Political Actor Representation Learning with Social Context and Expert Knowledge

论文作者

Feng, Shangbin, Tan, Zhaoxuan, Chen, Zilong, Wang, Ningnan, Yu, Peisheng, Zheng, Qinghua, Chang, Xiaojun, Luo, Minnan

论文摘要

建模政治行为者的意识形态观点是计算政治学的一项重要任务,并在许多下游任务中应用。现有方法通常仅限于文本数据和投票记录,而它们忽略了丰富的社会环境和有价值的专家知识来进行整体意识形态分析。在本文中,我们提出\ textbf {par},a \ textbf {p} olitical \ textbf {a} ctor \ textbf {r} ePresentation学习框架,共同利用社交背景和专家知识。具体而言,我们检索并提取有关立法者的事实陈述,以利用社会环境信息。然后,我们构建一个异构信息网络,以结合社会环境并使用关系图神经网络来学习立法者的代表。最后,我们以三个目标训练,以使表示学习与专家知识,模型意识形态立场一致性并模拟Echo室内现象。广泛的实验表明,PAR更好地擅长增强政治文本理解,并在政治透视检测和滚动呼叫投票预测中成功地推进了最先进的预测。进一步的分析证明,PAR学习反映政治现实并为政治行为提供新的见解的代表。

Modeling the ideological perspectives of political actors is an essential task in computational political science with applications in many downstream tasks. Existing approaches are generally limited to textual data and voting records, while they neglect the rich social context and valuable expert knowledge for holistic ideological analysis. In this paper, we propose \textbf{PAR}, a \textbf{P}olitical \textbf{A}ctor \textbf{R}epresentation learning framework that jointly leverages social context and expert knowledge. Specifically, we retrieve and extract factual statements about legislators to leverage social context information. We then construct a heterogeneous information network to incorporate social context and use relational graph neural networks to learn legislator representations. Finally, we train PAR with three objectives to align representation learning with expert knowledge, model ideological stance consistency, and simulate the echo chamber phenomenon. Extensive experiments demonstrate that PAR is better at augmenting political text understanding and successfully advances the state-of-the-art in political perspective detection and roll call vote prediction. Further analysis proves that PAR learns representations that reflect the political reality and provide new insights into political behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源