论文标题
MGNNI:具有隐式层的多尺度图神经网络
MGNNI: Multiscale Graph Neural Networks with Implicit Layers
论文作者
论文摘要
最近,已经提出了隐式图神经网络(GNN)来捕获基础图中的远程依赖性。在本文中,我们介绍并证明了隐式GNN的两个弱点:由于其有效捕获长期依赖性的有效范围而导致的表现力有限,并且缺乏在多个分辨率下在图形上捕获多尺度信息的能力。为了显示以前隐式GNN的有效范围有限的范围,我们首先提供理论分析,并指出这些模型中使用的有效范围与迭代方程的收敛之间的内在关系。为了减轻上述弱点,我们提出了一个具有隐式图层(MGNNI)的多尺度图神经网络,该神经网络能够在图上对多尺度结构进行建模,并具有扩展的有效范围,用于捕获长期依赖关系。我们对节点分类和图形分类进行了全面的实验,以表明MGNNI优于代表性基准,并且具有更好的多尺度建模和捕获长期依赖性的能力。
Recently, implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs. In this paper, we introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions. To show the limited effective range of previous implicit GNNs, We first provide a theoretical analysis and point out the intrinsic relationship between the effective range and the convergence of iterative equations used in these models. To mitigate the mentioned weaknesses, we propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies. We conduct comprehensive experiments for both node classification and graph classification to show that MGNNI outperforms representative baselines and has a better ability for multiscale modeling and capturing of long-range dependencies.