论文标题
无扩展图对比度学习不变歧视表示
Augmentation-Free Graph Contrastive Learning of Invariant-Discriminative Representations
论文作者
论文摘要
预审主要建立在相互信息估计的基础上,该信息需要数据增强才能构建具有类似语义的正面样本,以学习不变的信号和具有不同语义的负面样本,以赋予表示能力的能力。但是,适当的数据增强配置在很大程度上取决于许多经验试验,例如选择数据增强技术的组成和相应的高参数设置。我们提出了一种无增强的图形对比学习方法,不变的歧视图对比度学习(IGCL),该方法本质上不需要阴性样本。 IGCL设计不变的歧视性损失(ID损失),以学习不变和歧视性表示。一方面,ID损失通过直接最大程度地减少表示空间中的目标样本和正样本之间的均方误差来学习不变信号。另一方面,ID损失可确保通过正统的约束来歧视表示形式,从而迫使表示形式的不同维度彼此独立。这样可以防止表示形式崩溃到点或子空间。我们的理论分析从冗余标准,规范相关分析和信息瓶颈原则的角度解释了ID损失的有效性。实验结果表明,IGCL在5个节点分类基准数据集上优于所有基准。 IGCL还显示出不同标签比的出色性能,并且能够抵抗图形攻击,这表明IGCL具有出色的概括和鲁棒性。源代码可从https://github.com/lehaifeng/t-gcn/tree/master/igcl获得。
The pretasks are mainly built on mutual information estimation, which requires data augmentation to construct positive samples with similar semantics to learn invariant signals and negative samples with dissimilar semantics in order to empower representation discriminability. However, an appropriate data augmentation configuration depends heavily on lots of empirical trials such as choosing the compositions of data augmentation techniques and the corresponding hyperparameter settings. We propose an augmentation-free graph contrastive learning method, invariant-discriminative graph contrastive learning (iGCL), that does not intrinsically require negative samples. iGCL designs the invariant-discriminative loss (ID loss) to learn invariant and discriminative representations. On the one hand, ID loss learns invariant signals by directly minimizing the mean square error between the target samples and positive samples in the representation space. On the other hand, ID loss ensures that the representations are discriminative by an orthonormal constraint forcing the different dimensions of representations to be independent of each other. This prevents representations from collapsing to a point or subspace. Our theoretical analysis explains the effectiveness of ID loss from the perspectives of the redundancy reduction criterion, canonical correlation analysis, and information bottleneck principle. The experimental results demonstrate that iGCL outperforms all baselines on 5 node classification benchmark datasets. iGCL also shows superior performance for different label ratios and is capable of resisting graph attacks, which indicates that iGCL has excellent generalization and robustness. The source code is available at https://github.com/lehaifeng/T-GCN/tree/master/iGCL.