论文标题
扩展磁绝缘膜中的非本地木元跨导率。\\第II部分:两流体行为
Non-local magnon transconductance in extended magnetic insulating films.\\Part II: two-fluid behavior
论文作者
论文摘要
这篇评论介绍了一项全面的研究,该研究通过在Yig $ \ vert $ pt界面上的自旋传递效果在扩展的Yttrium-Iron Garnet(YIG)膜中发出电气发射的镁的空间分散。我们的目标是提供一个通用框架,以描述磁性膜内部的镁跨导率。我们通过研究镁信号的横向衰变来实验阐明相关的光谱贡献。虽然大多数注入的玉米子没有到达收集器,但传播木元素可以分为两氟二液:\ textit {i)}很大一小部分的高能量携带的能量携带约$ k_b t_0 $,其中$ t_0 $是晶格温度,具有特征性的衰减范围,textit and textit and smill frextiT and frestiation and frestiat and frestiT and f textIt;低能木元素,是含有$ \ hbarω_k$的颗粒,其中$ω_k/(2π)$是基特尔频率,具有特征性的衰减长度在千分尺范围内。利用其不同的物理特性,低能能的镁可以在很大的自旋传输速率下成为主要的流体\ textIt {i)},从而在距离发射器的较大距离处造成镁的发射,\ textit {ii)},在\ textIt {iii)}处,在小膜厚度和iv textig the Em the Em the Em the Em for y IV {iiv)中}}由于镁浓度的变化。这张更广泛的图片补充了第i \ cite {kohno_sd},它仅着眼于低能量木元的非线性传输属性。
This review presents a comprehensive study of the spatial dispersion of propagating magnons electrically emitted in extended yttrium-iron garnet (YIG) films by the spin transfer effects across a YIG$\vert$Pt interface. Our goal is to provide a generic framework to describe the magnon transconductance inside magnetic films. We experimentally elucidate the relevant spectral contributions by studying the lateral decay of the magnon signal. While most of the injected magnons do not reach the collector, the propagating magnons can be split into two-fluids: \textit{i)} a large fraction of high-energy magnons carrying energy of about $k_B T_0$, where $T_0$ is the lattice temperature, with a characteristic decay length in the sub-micrometer range, and \textit{ii)} a small fraction of low-energy magnons, which are particles carrying energy of about $\hbar ω_K$, where $ω_K/(2 π)$ is the Kittel frequency, with a characteristic decay length in the micrometer range. Taking advantage of their different physical properties, the low-energy magnons can become the dominant fluid \textit{i)} at large spin transfer rates for the bias causing the emission of magnons, \textit{ii)} at large distance from the emitter, \textit{iii)} at small film thickness, or \textit{iv)} for reduced band mismatch between the YIG below the emitter and the bulk due to variation of the magnon concentration. This broader picture complements part I \cite{kohno_SD}, which focuses solely on the nonlinear transport properties of low-energy magnons.