论文标题

多批次增强学习的近乎最佳的遗憾范围

Near-Optimal Regret Bounds for Multi-batch Reinforcement Learning

论文作者

Zhang, Zihan, Jiang, Yuhang, Zhou, Yuan, Ji, Xiangyang

论文摘要

在本文中, 我们研究了由有限的马尔可夫决策过程(MDP)建模的情节增强学习(RL)问题,对批处理数量有限制。多批量增强学习框架,在该框架中,代理需要提供时间表以在所有内容之前更新策略,这特别适用于代理商在适应性上更改策略的情况很大的情况。给定有$ s $状态的有限 - 霍森MDP,$ a $ ACTION和PLANCHON $ h $,我们设计了一种计算有效算法,以实现$ \ tilde {o} {o}(\ sqrt {\ sqrt {sah^3k \ ln(1/δ)}} $ \ footnote { $(s,a,h,k)$}的对数项使用$ o \ left(h+\ log_2 \ log_2(k)\ right)$ batches,带有信心参数$Δ$。 就我们的最佳知识而言,这是第一个$ \ tilde {o}(\ sqrt {sah^3k})$ hearle用$ o(h+\ log_2 \ log_2(k))$ batch复杂性。 Meanwhile, we show that to achieve $\tilde{O}(\mathrm{poly}(S,A,H)\sqrt{K})$ regret, the number of batches is at least $Ω\left(H/\log_A(K)+ \log_2\log_2(K) \right)$, which matches our upper bound up to logarithmic terms. 我们的技术贡献是两个方面的:1)一种近乎最佳的设计计划,可以探索未经学习的国家; 2)一种计算有效算法,可通过近似过渡模型探索某些方向。

In this paper, we study the episodic reinforcement learning (RL) problem modeled by finite-horizon Markov Decision Processes (MDPs) with constraint on the number of batches. The multi-batch reinforcement learning framework, where the agent is required to provide a time schedule to update policy before everything, which is particularly suitable for the scenarios where the agent suffers extensively from changing the policy adaptively. Given a finite-horizon MDP with $S$ states, $A$ actions and planning horizon $H$, we design a computational efficient algorithm to achieve near-optimal regret of $\tilde{O}(\sqrt{SAH^3K\ln(1/δ)})$\footnote{$\tilde{O}(\cdot)$ hides logarithmic terms of $(S,A,H,K)$} in $K$ episodes using $O\left(H+\log_2\log_2(K) \right)$ batches with confidence parameter $δ$. To our best of knowledge, it is the first $\tilde{O}(\sqrt{SAH^3K})$ regret bound with $O(H+\log_2\log_2(K))$ batch complexity. Meanwhile, we show that to achieve $\tilde{O}(\mathrm{poly}(S,A,H)\sqrt{K})$ regret, the number of batches is at least $Ω\left(H/\log_A(K)+ \log_2\log_2(K) \right)$, which matches our upper bound up to logarithmic terms. Our technical contribution are two-fold: 1) a near-optimal design scheme to explore over the unlearned states; 2) an computational efficient algorithm to explore certain directions with an approximated transition model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源