论文标题

Udoc-gan:未配对的文档照明校正具有背景光的先验

UDoc-GAN: Unpaired Document Illumination Correction with Background Light Prior

论文作者

Wang, Yonghui, Zhou, Wengang, Lu, Zhenbo, Li, Houqiang

论文摘要

由移动设备捕获的文档图像通常会因无法控制的照明而降低,从而妨碍了文档内容的清晰度。最近,一系列的研究工作已致力于纠正不均匀的文档照明。但是,现有方法很少考虑使用环境光信息,并且通常依靠配对样品,包括降级和校正的地面图像,这些图像并非总是可访问的。为此,我们提出了UDOC-GAN,这是第一个解决未配对设置下文档照明校正问题的框架。具体来说,我们首先预测文档的环境光特征。然后,根据不同环境灯的特征,我们重新构建了循环一致性约束,以了解正常和异常照明域之间的潜在关系。为了证明我们方法的有效性,我们在未配对的环境下对DOCPROJ数据集进行了广泛的实验。与最先进的方法相比,我们的方法在字符错误率(CER)和编辑距离(ED)方面表现出了有希望的性能,以及用于文本细节保存的更好定性结果。源代码现已在https://github.com/harrytea/udoc-gan上公开获得。

Document images captured by mobile devices are usually degraded by uncontrollable illumination, which hampers the clarity of document content. Recently, a series of research efforts have been devoted to correcting the uneven document illumination. However, existing methods rarely consider the use of ambient light information, and usually rely on paired samples including degraded and the corrected ground-truth images which are not always accessible. To this end, we propose UDoc-GAN, the first framework to address the problem of document illumination correction under the unpaired setting. Specifically, we first predict the ambient light features of the document. Then, according to the characteristics of different level of ambient lights, we re-formulate the cycle consistency constraint to learn the underlying relationship between normal and abnormal illumination domains. To prove the effectiveness of our approach, we conduct extensive experiments on DocProj dataset under the unpaired setting. Compared with the state-of-the-art approaches, our method demonstrates promising performance in terms of character error rate (CER) and edit distance (ED), together with better qualitative results for textual detail preservation. The source code is now publicly available at https://github.com/harrytea/UDoc-GAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源