论文标题

Bishop-phelps-Bollobás型的本地形式,用于双线性地图

Local forms of Bishop-Phelps-Bollobás type properties for bilinear maps

论文作者

Chakraborty, Uday Shankar

论文摘要

在本文中,我们表征了所谓的属性$ \ textbf {l} _ {o,o} $,由丹塔斯(Dantas)和鲁德(Rueda Zoca)定义,用于紧凑,虚弱的连续双线性地图。由此,我们通过定义弱$ \ textbf {l} _ {o,o} $来削弱此属性。我们提供了$ \ textbf {l} _ {o,o} $属性的等效性(x \ hat {\ otimes}_πy,\ mathbb {r})$ for Linear函数和$(x,x,x,y;; \ alsbb {r})$ for BiLinear y y y y $ y y y y y y y y y y y y y y y y y y y y y y $此外,我们还确定,在某些预先签约的条件下,如果bilnear映射$ t $属于满足属性$ \ textbf {l} _ {o,o} $(weff $ \ $ \ textbf {l textbf {l textbf {l} _ {l} _ {o,o,o} $)的$ bilinear map a thy thy thy thy thy的属性,则是A $ \ textbf {l} _ {o,o} $(resp。

In this paper, we characterize the so called property $\textbf{L}_{o,o}$ as defined by Dantas and Rueda Zoca, for compact, weak-weak continuous bilinear maps. Motivated by this we weaken this property by defining the weak $\textbf{L}_{o,o}$ for bilinear maps. We provide equivalence of the weak $\textbf{L}_{o,o}$ property of $(X\hat{\otimes}_πY,\mathbb{R})$ for linear functionals and that of $(X,Y;\mathbb{R})$ for bilinear forms under certain conditions on $X$ and $Y$. Moreover, we have also established that under certain preassigned conditions, if a bilnear map $T$ belongs to a class which satisfies the property $\textbf{L}_{o,o}$ (resp. the weak $\textbf{L}_{o,o}$) for bilinear maps, then $T^*$ is a member of a class of operators which satisfy the property $\textbf{L}_{o,o}$ (resp. the weak $\textbf{L}_{o,o}$) for operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源