论文标题

通过交替的反向过滤网络的全球和多光谱图像融合

Panchromatic and Multispectral Image Fusion via Alternating Reverse Filtering Network

论文作者

Yan, Keyu, Zhou, Man, Huang, Jie, Zhao, Feng, Xie, Chengjun, Li, Chongyi, Hong, Danfeng

论文摘要

Panchrostic(PAN)和多光谱(MS)图像融合(称为Pan-Sharpening)是指空间域中的超分辨率(LR)多光谱(MS)图像的超级溶解,以生成预期的高分辨率(HR)MS图像,并在相应的高分辨率高分辨率Pan Image上调节。在本文中,我们提出了一个简单而有效的\ textit {交替的反向过滤网络},以用于pan-sharpening。受到经典反向过滤的启发,在过滤之前将图像逆转为状态时,我们将pan-sharpening作为一种交替迭代的反向过滤过程,该过程以可解释的方式融合了LR MS和HR MS。与需要精心设计的先验和退化假设的现有模型驱动的方法不同,反向滤波过程避免了对预定的精确先验的依赖。为了通过公制空间上的收缩映射来确保迭代过程的稳定性和收敛性,我们开发了可学习的多尺度高斯内核模块,而不是使用特定的过滤器。我们证明了此类配方的理论可行性。在各种场景上进行了广泛的实验,以彻底验证我们的方法的性能,从而大大优于艺术状态。

Panchromatic (PAN) and multi-spectral (MS) image fusion, named Pan-sharpening, refers to super-resolve the low-resolution (LR) multi-spectral (MS) images in the spatial domain to generate the expected high-resolution (HR) MS images, conditioning on the corresponding high-resolution PAN images. In this paper, we present a simple yet effective \textit{alternating reverse filtering network} for pan-sharpening. Inspired by the classical reverse filtering that reverses images to the status before filtering, we formulate pan-sharpening as an alternately iterative reverse filtering process, which fuses LR MS and HR MS in an interpretable manner. Different from existing model-driven methods that require well-designed priors and degradation assumptions, the reverse filtering process avoids the dependency on pre-defined exact priors. To guarantee the stability and convergence of the iterative process via contraction mapping on a metric space, we develop the learnable multi-scale Gaussian kernel module, instead of using specific filters. We demonstrate the theoretical feasibility of such formulations. Extensive experiments on diverse scenes to thoroughly verify the performance of our method, significantly outperforming the state of the arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源