论文标题

注意域适应的正规拉普拉斯图

Attention Regularized Laplace Graph for Domain Adaptation

论文作者

Luo, Lingkun, Chen, Liming, Hu, Shiqiang

论文摘要

在利用域适应性(DA)中的多种学习中,基于图嵌入的DA方法显示了它们在通过Laplace图中保存数据歧管方面的有效性。但是,当前嵌入DA方法的图遇到了两个问题:1)。他们仅关注嵌入中的基本数据结构并忽略子域的适应性,这需要考虑阶层内相似性和阶层间差异,从而导致负转移。 2)。分别跨不同功能/标签空间提出了多种学习,从而阻碍了统一的综合流形学习。在本文中,从以前的DGA-DA开始,我们提出了一种新颖的DA方法,即基于Laplace Graph Graph Adaptation(ARG-DA)的正则关注,以纠正上述问题。具体而言,通过加权不同的子域适应任务的重要性,我们提出了针对班级意识的DA的正则laplace图,从而产生了正则化的DA。此外,使用专门设计的感觉策略,我们的方法动态地统一了不同特征/标签空间之间的歧管结构的对齐,从而导致了全面的多种流形学习。进行全面的实验以验证提出的DA方法的有效性,该方法始终超过7个标准DA基准的最新DA方法,即37个跨域图像分类任务,包括对象,面部和数字图像。还讨论了对所提出的DA方法的深入分析,包括灵敏度,收敛性和鲁棒性。

In leveraging manifold learning in domain adaptation (DA), graph embedding-based DA methods have shown their effectiveness in preserving data manifold through the Laplace graph. However, current graph embedding DA methods suffer from two issues: 1). they are only concerned with preservation of the underlying data structures in the embedding and ignore sub-domain adaptation, which requires taking into account intra-class similarity and inter-class dissimilarity, thereby leading to negative transfer; 2). manifold learning is proposed across different feature/label spaces separately, thereby hindering unified comprehensive manifold learning. In this paper, starting from our previous DGA-DA, we propose a novel DA method, namely Attention Regularized Laplace Graph-based Domain Adaptation (ARG-DA), to remedy the aforementioned issues. Specifically, by weighting the importance across different sub-domain adaptation tasks, we propose the Attention Regularized Laplace Graph for class-aware DA, thereby generating the attention regularized DA. Furthermore, using a specifically designed FEEL strategy, our approach dynamically unifies alignment of the manifold structures across different feature/label spaces, thus leading to comprehensive manifold learning. Comprehensive experiments are carried out to verify the effectiveness of the proposed DA method, which consistently outperforms the state-of-the-art DA methods on 7 standard DA benchmarks, i.e., 37 cross-domain image classification tasks including object, face, and digit images. An in-depth analysis of the proposed DA method is also discussed, including sensitivity, convergence, and robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源