论文标题

机器人规范违规响应的比例计算模型中的隐藏复杂性

Hidden Complexities in the Computational Modeling of Proportionality for Robotic Norm Violation Response

论文作者

Wen, Ruchen, Williams, Tom

论文摘要

具有语言能力的机器人具有对人类的独特有说服力的力量,因此可以通过拒绝不道德的命令并宣布违反规范的行为来帮助调节人们的行为并保护更好的道德生态系统。但是,错误校准的规范违规响应(当响应的苛刻性与实际规范违规的严重程度不符时)不仅可能会降低人类机器人通信的有效性,而且可能会损害人类与机器人之间的融洽关系。因此,当机器人应对规范违规行为时,至关重要的是,他们既认为他们的反应的道德价值(通过考虑他们的反应会产生多大的积极道德影响)和社会价值(通过考虑他们的话语可能施加了多少面对面威胁)。在本文中,我们提出了一个简单的(幼稚)数学比例模型,可以解释在多代理规范违规响应产生中应如何平衡道德和社会考虑。但更重要的是,我们使用此模型开始讨论建模相称性的隐藏复杂性,并使用此讨论来确定必须探索的关键研究方向,以发展社交和道德上具有语言能力的机器人。

Language-capable robots hold unique persuasive power over humans, and thus can help regulate people's behavior and preserve a better moral ecosystem, by rejecting unethical commands and calling out norm violations. However, miscalibrated norm violation responses (when the harshness of a response does not match the actual norm violation severity) may not only decrease the effectiveness of human-robot communication, but may also damage the rapport between humans and robots. Therefore, when robots respond to norm violations, it is crucial that they consider both the moral value of their response (by considering how much positive moral influence their response could exert) and the social value (by considering how much face threat might be imposed by their utterance). In this paper, we present a simple (naive) mathematical model of proportionality which could explain how moral and social considerations should be balanced in multi-agent norm violation response generation. But even more importantly, we use this model to start a discussion about the hidden complexity of modeling proportionality, and use this discussion to identify key research directions that must be explored in order to develop socially and morally competent language-capable robots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源