论文标题

PDE发现和操作员学习的内核方法

A Kernel Approach for PDE Discovery and Operator Learning

论文作者

Long, Da, Mrvaljevic, Nicole, Zhe, Shandian, Hosseini, Bamdad

论文摘要

本文介绍了使用内核方法学习和求解部分微分方程(PDE)的三步框架。给定一个由网格上的嘈杂的PDE解决方案和源/边界项组成的训练集,用于固定溶液的数据和近似衍生物。然后将此信息用于内核回归模型中,以学习PDE的代数形式。然后,在基于内核的求解器中使用了学习的PDE,以使用新的源/边界项近似PDE的解,从而构成了操作员学习框架。数值实验将方法与最先进的算法进行了比较,并证明了其竞争性能。

This article presents a three-step framework for learning and solving partial differential equations (PDEs) using kernel methods. Given a training set consisting of pairs of noisy PDE solutions and source/boundary terms on a mesh, kernel smoothing is utilized to denoise the data and approximate derivatives of the solution. This information is then used in a kernel regression model to learn the algebraic form of the PDE. The learned PDE is then used within a kernel based solver to approximate the solution of the PDE with a new source/boundary term, thereby constituting an operator learning framework. Numerical experiments compare the method to state-of-the-art algorithms and demonstrate its competitive performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源