论文标题
在67p/churyumov-gerasimenko上,HAPI区域的CO2驱动的表面变化
CO2-driven surface changes in the Hapi region on Comet 67P/Churyumov-Gerasimenko
论文作者
论文摘要
在2014年12月31日至2015年3月17日之间,罗塞塔(Rosetta)的奥西里斯(Osiris)摄像机记录了哈皮地区(Comet 67p/churyumov-gerasimenko)在HAPI地区的140m宽和0.5m深凹陷的增长。这个浅的坑是后来在彗星上其他地方形成的几个坑之一,它们都在光滑的地形上,主要是昏迷颗粒的浮标的结果。我们已经在2014年10月和11月在Rosetta上的Microwave仪器Miro汇编了HAPI的该区域。我们使用热物理和辐射转移模型,以重现Miro的观察。这使我们能够对热惯性,扩散性,化学成分,分层,消光系数和散射特性以及表面材料的散射特性以及它们在凹坑形成前的几个月中的进化方式放置约束。结果通过长期的彗星核进化模型放置在上下文中。我们建议:1)Miro观察到与Airfall材料中固态温室效应一致的特征; 2)二氧化碳冰足够靠近表面,对米罗天线温度产生了可测量的影响,并且可能是奥西里斯(Osiris)观察到的hapi中的凹坑形成; 3)二氧化碳升华前面的压力足以将灰尘和水冰排出,并向内部压缩彗星材料,从而导致Consert,芝麻和基于地面的雷达观察到的近乎表面的压实,表现为“固结的地形”纹理,由Osiris观察到。
Between 2014 December 31 and 2015 March 17, the OSIRIS cameras on Rosetta documented the growth of a 140m wide and 0.5m deep depression in the Hapi region on Comet 67P/Churyumov-Gerasimenko. This shallow pit is one of several that later formed elsewhere on the comet, all in smooth terrain that primarily is the result of airfall of coma particles. We have compiled observations of this region in Hapi by the microwave instrument MIRO on Rosetta, acquired during October and November 2014. We use thermophysical and radiative transfer models in order to reproduce the MIRO observations. This allows us to place constraints on the thermal inertia, diffusivity, chemical composition, stratification, extinction coefficients, and scattering properties of the surface material, and how they evolved during the months prior to pit formation. The results are placed in context through long-term comet nucleus evolution modelling. We propose that: 1) MIRO observes signatures that are consistent with a solid-state greenhouse effect in airfall material; 2) CO2 ice is sufficiently close to the surface to have a measurable effect on MIRO antenna temperatures, and likely is responsible for the pit formation in Hapi observed by OSIRIS; 3) the pressure at the CO2 sublimation front is sufficiently strong to expel dust and water ice outwards, and to compress comet material inwards, thereby causing the near-surface compaction observed by CONSERT, SESAME, and groundbased radar, manifested as the "consolidated terrain" texture observed by OSIRIS.