论文标题
Traintersim:自适应和计划感知的混合驱动交通交集模拟
TraInterSim: Adaptive and Planning-Aware Hybrid-Driven Traffic Intersection Simulation
论文作者
论文摘要
交通交叉点是重要场景,在交通系统中几乎可以看到。当前,大多数模拟方法在高速公路和城市交通网络上的表现都很好。在交叉路口的情况下,挑战在于缺乏明确定义的车道,在该车道中,具有各种运动策略的试剂从不同方向汇聚在中心区域。传统的基于模型的方法很难驱动代理在没有足够预定义车道的情况下在交叉路口实际移动,而数据驱动的方法通常需要大量高质量的输入数据。同时,不可避免地会涉及乏味的参数调整以获得所需的仿真结果。在本文中,我们提出了一种新颖的自适应和计划感知的混合驱动方法(Traintersim),以模拟交通交叉点。我们的混合驱动方法将基于优化的数据驱动方案与速度连续性模型相结合。它使用现实世界数据指导代理的运动,并可以生成输入数据中不存在的这些行为。我们的优化方法充分考虑了速度连续性,所需的速度,指导指导和计划感知碰撞的避免。代理商可以感知他人的运动计划和相对距离,以避免可能的碰撞。为了保留不同试剂的个体灵活性,在模拟过程中会自动调整我们方法中的参数。 Traintersim可以在互动率的不同交通交叉点方案中产生异质代理的现实行为。通过广泛的实验和用户研究,我们验证了所提出的仿真方法的有效性和合理性。
Traffic intersections are important scenes that can be seen almost everywhere in the traffic system. Currently, most simulation methods perform well at highways and urban traffic networks. In intersection scenarios, the challenge lies in the lack of clearly defined lanes, where agents with various motion plannings converge in the central area from different directions. Traditional model-based methods are difficult to drive agents to move realistically at intersections without enough predefined lanes, while data-driven methods often require a large amount of high-quality input data. Simultaneously, tedious parameter tuning is inevitable involved to obtain the desired simulation results. In this paper, we present a novel adaptive and planning-aware hybrid-driven method (TraInterSim) to simulate traffic intersection scenarios. Our hybrid-driven method combines an optimization-based data-driven scheme with a velocity continuity model. It guides the agent's movements using real-world data and can generate those behaviors not present in the input data. Our optimization method fully considers velocity continuity, desired speed, direction guidance, and planning-aware collision avoidance. Agents can perceive others' motion planning and relative distance to avoid possible collisions. To preserve the individual flexibility of different agents, the parameters in our method are automatically adjusted during the simulation. TraInterSim can generate realistic behaviors of heterogeneous agents in different traffic intersection scenarios in interactive rates. Through extensive experiments as well as user studies, we validate the effectiveness and rationality of the proposed simulation method.