论文标题
部分可观测时空混沌系统的无模型预测
Perturbation theory with dispersion and higher cumulants: framework and linear theory
论文作者
论文摘要
重力聚类的标准扰动理论(SPT)方法基于基础vlasov-Poisson动力学的流体近似,仅考虑了相位空间分布函数的零零和第一个累积液(密度和速度字段)。当暗物质粒子轨道交叉并导致众所周知的问题,例如小规模模式的异常反应在较大的尺度上损害了预测性。我们通过掺入轨道交叉产生的第二和更高累积物来扩展SPT。对于无碰撞物质,它们的运动方程式是由Vlasov-Poisson系统完全固定的,因此我们将这种方法称为Vlasov扰动理论(VPT)。甚至累积物都会产生背景价值,它们进入波动的耦合方程式的层次结构。背景值反过来又由波动的功率谱提出。后者可以将其形成与SPT形式上类似的形式,但具有扩展的变量和线性和非线性项,我们明确得出了。在本文中,我们专注于线性溶液,这些溶液比SPT中的较丰富,表明跨越第二累积量的分散量表的模式受到了高度抑制。我们从缺乏指数不稳定性的要求中得出了甚至累积物的背景值的稳定条件。我们还计算了各种光环模型的平均较高累积物的预期幅度,并表明它们满足稳定性条件。最后,我们得出了缩放宇宙的扰动和背景值的自洽解决方案,并研究了累积扩展的收敛性。 VPT框架在概念上提供了SPT的简单明了,确定性的扩展,以解释小规模模式的解耦。
The standard perturbation theory (SPT) approach to gravitational clustering is based on a fluid approximation of the underlying Vlasov-Poisson dynamics, taking only the zeroth and first cumulant of the phase-space distribution function into account (density and velocity fields). This assumption breaks down when dark matter particle orbits cross and leads to well-known problems, e.g. an anomalously large backreaction of small-scale modes onto larger scales that compromises predictivity. We extend SPT by incorporating second and higher cumulants generated by orbit crossing. For collisionless matter, their equations of motion are completely fixed by the Vlasov-Poisson system, and thus we refer to this approach as Vlasov Perturbation Theory (VPT). Even cumulants develop a background value, and they enter the hierarchy of coupled equations for the fluctuations. The background values are in turn sourced by power spectra of the fluctuations. The latter can be brought into a form that is formally analogous to SPT, but with an extended set of variables and linear as well as non-linear terms, that we derive explicitly. In this paper, we focus on linear solutions, which are far richer than in SPT, showing that modes that cross the dispersion scale set by the second cumulant are highly suppressed. We derive stability conditions on the background values of even cumulants from the requirement that exponential instabilities be absent. We also compute the expected magnitude of averaged higher cumulants for various halo models and show that they satisfy the stability conditions. Finally, we derive self-consistent solutions of perturbations and background values for a scaling universe and study the convergence of the cumulant expansion. The VPT framework provides a conceptually straightforward and deterministic extension of SPT that accounts for the decoupling of small-scale modes.