论文标题
Pishgu:实时网络物理边缘系统的通用路径预测网络体系结构
Pishgu: Universal Path Prediction Network Architecture for Real-time Cyber-physical Edge Systems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Path prediction is an essential task for many real-world Cyber-Physical Systems (CPS) applications, from autonomous driving and traffic monitoring/management to pedestrian/worker safety. These real-world CPS applications need a robust, lightweight path prediction that can provide a universal network architecture for multiple subjects (e.g., pedestrians and vehicles) from different perspectives. However, most existing algorithms are tailor-made for a unique subject with a specific camera perspective and scenario. This article presents Pishgu, a universal lightweight network architecture, as a robust and holistic solution for path prediction. Pishgu's architecture can adapt to multiple path prediction domains with different subjects (vehicles, pedestrians), perspectives (bird's-eye, high-angle), and scenes (sidewalk, highway). Our proposed architecture captures the inter-dependencies within the subjects in each frame by taking advantage of Graph Isomorphism Networks and the attention module. We separately train and evaluate the efficacy of our architecture on three different CPS domains across multiple perspectives (vehicle bird's-eye view, pedestrian bird's-eye view, and human high-angle view). Pishgu outperforms state-of-the-art solutions in the vehicle bird's-eye view domain by 42% and 61% and pedestrian high-angle view domain by 23% and 22% in terms of ADE and FDE, respectively. Additionally, we analyze the domain-specific details for various datasets to understand their effect on path prediction and model interpretation. Finally, we report the latency and throughput for all three domains on multiple embedded platforms showcasing the robustness and adaptability of Pishgu for real-world integration into CPS applications.