论文标题
基于MIP的多机器人几何任务和运动计划的方法
A MIP-Based Approach for Multi-Robot Geometric Task-and-Motion Planning
论文作者
论文摘要
我们解决了同步单调设置中的多机器人几何任务和运动计划(MR-GTAMP)问题。 MR-GTAMP问题的目的是在存在其他可移动对象的情况下将具有多个机器人的对象移至目标区域。为了成功有效地执行任务,机器人必须采用智能协作策略,即确定哪些机器人应移动哪些对象到哪些位置,并执行诸如移交之类的协作行动。为了赋予这些协作功能,我们建议首先为每个机器人收集遮挡和可及性信息,以及有关两个机器人是否可以通过调用运动规划算法执行切换动作的信息。然后,我们提出了一种使用收集到的信息来构建图形结构的方法,该图形结构捕获了不同对象的操作的优先级,并支持实施混合成员程序,以指导搜索高效的协作任务和动作计划。协作任务和动作计划的搜索过程基于蒙特卡洛树搜索(MCTS)探索策略,以实现探索探索平衡。我们在两个具有挑战性的GTAMP域中评估了我们的框架,并表明它可以在计划时间,结果计划的长度以及与两个最新基线相比的对象数量方面生成高质量的任务和动作计划。
We address multi-robot geometric task-and-motion planning (MR-GTAMP) problems in synchronous, monotone setups. The goal of the MR-GTAMP problem is to move objects with multiple robots to goal regions in the presence of other movable objects. To perform the tasks successfully and effectively, the robots have to adopt intelligent collaboration strategies, i.e., decide which robot should move which objects to which positions, and perform collaborative actions, such as handovers. To endow robots with these collaboration capabilities, we propose to first collect occlusion and reachability information for each robot as well as information about whether two robots can perform a handover action by calling motion-planning algorithms. We then propose a method that uses the collected information to build a graph structure which captures the precedence of the manipulations of different objects and supports the implementation of a mixed-integer program to guide the search for highly effective collaborative task-and-motion plans. The search process for collaborative task-and-motion plans is based on a Monte-Carlo Tree Search (MCTS) exploration strategy to achieve exploration-exploitation balance. We evaluate our framework in two challenging GTAMP domains and show that it can generate high-quality task-and-motion plans with respect to the planning time, the resulting plan length and the number of objects moved compared to two state-of-the-art baselines.