论文标题
全碳纳米管太阳能电池设备模仿光合作用
All-carbon nanotube solar cell devices mimic photosynthesis
论文作者
论文摘要
光伏有两个主要过程:光吸收和功率转换。在光合作用中,两个等效过程是光吸收和化学转化。尽管在后者中,这两个过程是通过不同的蛋白质进行的,在常规光伏二极管中,这两个过程是响应的,因为光学和传输路径是相同的,导致效率低下。在这里,我们将光吸收的位点和方向与发电的位置和方向分开,以表明半导体的单壁碳纳米管(S-SWCNT)提供了一个人工系统,该系统在串联几何形状中建模光合作用。使用不同的S-SWCNT手势,我们在双门控P-N二极管中实施了一个能量漏斗。这使得可以从太阳光谱的多个区域捕获光子,并将光生激子的光磁子汇合到最小的带隙S-SWCNT层,在那里它们成为自由载体。结果,我们通过添加更多不同带盖的S-SWCNT层而没有相应有害泄漏电流的有害增加,从而证明了光电流的大小和光谱响应的增加。
Photovoltaics has two main processes: Optical absorption and power conversion. In photosynthesis, the two equivalent processes are optical absorption and chemical conversion. Whereas in the latter, the two processes are carried out by distinct proteins, in conventional photovoltaic diodes, the two processes are convoluted because the optical and transport paths are the same, leading to inefficiencies. Here, we separate the site and direction of light absorption from those of power generation to show that semiconducting single-walled carbon nanotubes (s-SWCNTs) provide an artificial system that models photosynthesis in a tandem geometry. Using different s-SWCNT chiralities, we implement an energy funnel in dual-gated p-n diodes. This enables the capture of photons from multiple regions of the solar spectrum and the funneling of photogenerated excitons to the smallest bandgap s-SWCNT layer, where they become free carriers. As a result, we demonstrate an increase in the magnitude and spectral response of photocurrent by adding more s-SWCNT layers of different bandgaps without a corresponding deleterious increase in the dark leakage current.