论文标题

变形金刚清除范围的MRI MRI伪像

Wide Range MRI Artifact Removal with Transformers

论文作者

Van der Goten, Lennart Alexander, Smith, Kevin

论文摘要

对于放射科医生和计算机辅助诊断系统而言,磁共振扫描的伪像是一个严重的挑战。最常见的是,伪影是由患者的运动引起的,但也可能是由设备特异性异常(例如噪声模式)引起的。不管来源如何,文物不仅可以使扫描无用,而且如果没有被注意到,可能会引起误诊。例如,人工制品可能会伪装成肿瘤或其他异常。回顾性伪影校正(RAC)与扫描已经进行后去除伪影有关。在这项工作中,我们提出了一种能够回顾性去除八个在本地分辨率MR图像中发现的常见伪像的方法。不假定了解特定伪像的存在或位置,并且通过设计,系统可以消除多个伪影的相互作用。我们的方法是通过设计新型体积变压器神经网络的设计来实现的,该神经网络概括了由Swin Transformer普及的\ Emph {以窗口为中心的}方法。与Swin不同,我们的方法是(i)本地体积,(ii)朝着密集的预测任务而不是分类而不是分类,并且(iii)使用一种新颖而全球的机制来启用窗口之间的信息交换。我们的实验表明,我们的重建比Resnet,V-Net,Mobilenet-V2,Densenet,Cyclegan和Bicyclegan所获得的重建要好得多。此外,我们表明,来自模型的重建图像提高了FSL BET的准确性,FSL BET是一种通常应用于诊断工作流程中的标准颅骨剥离方法。

Artifacts on magnetic resonance scans are a serious challenge for both radiologists and computer-aided diagnosis systems. Most commonly, artifacts are caused by motion of the patients, but can also arise from device-specific abnormalities such as noise patterns. Irrespective of the source, artifacts can not only render a scan useless, but can potentially induce misdiagnoses if left unnoticed. For instance, an artifact may masquerade as a tumor or other abnormality. Retrospective artifact correction (RAC) is concerned with removing artifacts after the scan has already been taken. In this work, we propose a method capable of retrospectively removing eight common artifacts found in native-resolution MR imagery. Knowledge of the presence or location of a specific artifact is not assumed and the system is, by design, capable of undoing interactions of multiple artifacts. Our method is realized through the design of a novel volumetric transformer-based neural network that generalizes a \emph{window-centered} approach popularized by the Swin transformer. Unlike Swin, our method is (i) natively volumetric, (ii) geared towards dense prediction tasks instead of classification, and (iii), uses a novel and more global mechanism to enable information exchange between windows. Our experiments show that our reconstructions are considerably better than those attained by ResNet, V-Net, MobileNet-v2, DenseNet, CycleGAN and BicycleGAN. Moreover, we show that the reconstructed images from our model improves the accuracy of FSL BET, a standard skull-stripping method typically applied in diagnostic workflows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源