论文标题

分数korteweg-de vries类型方程的孤立波的衰减

Decay of solitary waves of fractional Korteweg-de Vries type equations

论文作者

Eychenne, Arnaud, Valet, Frédéric

论文摘要

我们研究了与$ 1 $二维半线性分数方程相关的分数korteweg-de vries类型方程的孤立波。 \ vert d \ vert^αu + u -f(u)= 0,\ end {align*},带有$α\ in(0,2)$,一个规定的系数$ p^*(α)$和非线性$ f(u)$ f(u) $ f(u)= u^p $,带有整数$ p \ [2; p^*(α))$。就分散系数$α$和非线性$ P $而言,给出了无限解决方案的订单$ 1 $ $ 1 $的渐近开发以及阳性解决方案的二阶开发项目。主要工具是Bona和Li引入的内核配方,以及复杂分析理论对内核的准确描述。

We study the solitary waves of fractional Korteweg-de Vries type equations, that are related to the $1$-dimensional semi-linear fractional equations: \begin{align*} \vert D \vert^αu + u -f(u)=0, \end{align*} with $α\in (0,2)$, a prescribed coefficient $p^*(α)$, and a non-linearity $f(u)=\vert u \vert^{p-1}u$ for $p\in(1,p^*(α))$, or $f(u)=u^p$ with an integer $p\in[2;p^*(α))$. Asymptotic developments of order $1$ at infinity of solutions are given, as well as second order developments for positive solutions, in terms of the coefficient of dispersion $α$ and of the non-linearity $p$. The main tools are the kernel formulation introduced by Bona and Li, and an accurate description of the kernel by complex analysis theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源