论文标题

封装和超级扇形颗粒的分散的特性

Properties of packings and dispersions of superellipse sector particles

论文作者

Colt, John, Nelson, Lucas, Cargile, Sykes, Brzinski, Ted, Franklin, Scott V.

论文摘要

超层次扇形颗粒(SESPS)是超明流曲线的段,形成了可调的用于颗粒状和胶体系统的硬粒子形状的集合。 SESPS允许连续参数化角度清晰度,纵横比和粒子曲率;杆,圆,矩形和钉书钉是SESPS可以建模的形状的示例。我们比较了三个计算过程:配对的蒙特卡洛模拟,仅查看粒子粒子几何约束,蒙特卡洛模拟,这些模拟观察了这些几何约束如何在许多粒子的扩展分散体上播放,以及分子动力学模拟,允许粒子相互作用以形成随机的松散和关闭包装。我们研究了临界随机松动和关闭堆积部分对粒子参数的依赖性,发现两个值都会随着孔径(如预期)而增加,并且一般而言,随着角的锐度的增加而减小。将确定的填充部分与随机接触模型的平均场预测进行了比较。由于粒子方向之间的相关性,我们发现与模型预测的偏差。使用广义时空分布区(SODA)图探索了空间近端和取向对齐的复杂相互作用。假设少数优选构型敏感粒子形状和系统制备,可以通过颗粒来实现较高的密度包装。

Superellipse sector particles (SeSPs) are segments of superelliptical curves that form a tunable set of hard-particle shapes for granular and colloidal systems. SeSPs allow for continuous parameterization of corner sharpness, aspect ratio, and particle curvature; rods, circles, rectangles, and staples are examples of shapes SeSPs can model. We compare three computational processes: pair-wise Monte Carlo simulations that look only at particle-particle geometric constraints, Monte Carlo simulations that look at how these geometric constraints play out over extended dispersions of many particles, and Molecular Dynamics simulations that allow particles to interact to form random loose and close packings. We investigate the dependence of critical random loose and close packing fractions on particle parameters, finding that both values tend to increase with opening aperture (as expected) and, in general, decrease with increasing corner sharpness. The identified packing fractions are compared with the mean-field prediction of the Random Contact Model. We find deviations from the model's prediction due to correlations between particle orientations. The complex interaction of spatial proximity and orientational alignment is explored using a generalized Spatio-Orientational Distribution Area (SODA) plot. Higher density packings are achieved through particles assuming a small number of preferred configurations which depend sensitively on particle shape and system preparation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源