论文标题
机器学习纳米原子的轨道轨道能量
Machine learning frontier orbital energies of nanodiamonds
论文作者
论文摘要
纳米原子座具有广泛的应用,包括催化,感应,摩擦学和生物医学。为了通过机器学习来利用纳米座设计的设计,我们介绍了新的数据集ND5K,该数据集ND5K由5,089颗钻石和纳米座结构及其边界轨道能量组成。 ND5K结构是通过紧密结合密度函数理论(DFTB)优化的,其前沿轨道能是使用PBE0混合功能的密度功能理论(DFT)计算的。我们还比较了最近的机器学习模型,以预测对类似结构的前沿轨道能的训练(ND5K上的插值),并测试了它们的能力,可以将预测推送到较大的结构上。对于插值和外推任务,我们使用Equivariant图神经网络paacn找到了最佳性能。第二种最佳结果是通过在此处提出的一组量身定制的原子描述符来传递神经网络的消息。
Nanodiamonds have a wide range of applications including catalysis, sensing, tribology and biomedicine. To leverage nanodiamond design via machine learning, we introduce the new dataset ND5k, consisting of 5,089 diamondoid and nanodiamond structures and their frontier orbital energies. ND5k structures are optimized via tight-binding density functional theory (DFTB) and their frontier orbital energies are computed using density functional theory (DFT) with the PBE0 hybrid functional. We also compare recent machine learning models for predicting frontier orbital energies for similar structures as they have been trained on (interpolation on ND5k), and we test their abilities to extrapolate predictions to larger structures. For both the interpolation and extrapolation task, we find best performance using the equivariant graph neural network PaiNN. The second best results are achieved with a message passing neural network using a tailored set of atomic descriptors proposed here.