论文标题

数值稳定的稀疏高斯工艺通过使用覆盖树的最小分离

Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees

论文作者

Terenin, Alexander, Burt, David R., Artemev, Artem, Flaxman, Seth, van der Wilk, Mark, Rasmussen, Carl Edward, Ge, Hong

论文摘要

高斯流程经常被作为更大的机器学习和决策系统的一部分,例如在地理空间建​​模,贝叶斯优化或潜在的高斯模型中。在系统中,高斯流程模型需要以稳定且可靠的方式执行,以确保其与系统的其他部分正确交互。在这项工作中,我们研究了基于诱导点的可扩展稀疏近似值的数值稳定性。为此,我们首先回顾了数值稳定性,并说明了高斯过程模型可能不稳定的典型情况。在最初在插值文献中开发的稳定理论的基础上,我们得出了足够的,在某些情况下,在某些情况下,在诱导点上进行了必要条件,用于在数值上稳定的计算。对于低维任务,例如地理空间建​​模,我们提出了一种自动化方法,用于计算满足这些条件的诱导点。这是通过对盖树数据结构的修改进行的,该结构具有独立的兴趣。我们另外提出了一个替代性稀疏近似,用于带有高斯的可能性,该近似值将少量的性能折衷,以进一步提高稳定性。我们提供了说明性的例子,显示了计算稳定性与诱导点方法在空间任务上的预测性能之间的关系。

Gaussian processes are frequently deployed as part of larger machine learning and decision-making systems, for instance in geospatial modeling, Bayesian optimization, or in latent Gaussian models. Within a system, the Gaussian process model needs to perform in a stable and reliable manner to ensure it interacts correctly with other parts of the system. In this work, we study the numerical stability of scalable sparse approximations based on inducing points. To do so, we first review numerical stability, and illustrate typical situations in which Gaussian process models can be unstable. Building on stability theory originally developed in the interpolation literature, we derive sufficient and in certain cases necessary conditions on the inducing points for the computations performed to be numerically stable. For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions. This is done via a modification of the cover tree data structure, which is of independent interest. We additionally propose an alternative sparse approximation for regression with a Gaussian likelihood which trades off a small amount of performance to further improve stability. We provide illustrative examples showing the relationship between stability of calculations and predictive performance of inducing point methods on spatial tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源