论文标题

E2R:一种层次学习灵感的新颖搜索方法,以产生多种抓地力轨迹的曲目

E2R: a Hierarchical-Learning inspired Novelty-Search method to generate diverse repertoires of grasping trajectories

论文作者

Huber, Johann, Sane, Oumar, Coninx, Alex, Amar, Faiz Ben, Doncieux, Stephane

论文摘要

机器人掌握的是指使机器人系统通过在其表面上施加力和扭矩来选择物体的任务。尽管数据驱动的方法最近取得了进步,但抓地力仍然是一个未解决的问题。这项任务上的大多数作品都依靠先验和严格的约束来避免探索问题。新颖搜索(NS)是指用最新颖的人选择最佳性能的人的进化算法。此类方法已经在硬探索问题上显示出令人鼓舞的结果。在这项工作中,我们介绍了一种新的基于NS的方法,该方法可以以平台 - 不平衡的方式生成大量的抓住轨迹数据集。受层次学习范式的启发,我们的方法是脱离方法和预性,使行为空间更加顺畅。在3种不同的机器人锻炼设置和几个标准对象上进行的实验表明,我们的方法优于生成抓地力轨迹的多样化曲目,获得更高的成功运行率的最先进,以及对方法和预性的更好多样性。一些生成的解决方案已成功部署在真实的机器人上,显示了所获得的曲目的可剥削性。

Robotics grasping refers to the task of making a robotic system pick an object by applying forces and torques on its surface. Despite the recent advances in data-driven approaches, grasping remains an unsolved problem. Most of the works on this task are relying on priors and heavy constraints to avoid the exploration problem. Novelty Search (NS) refers to evolutionary algorithms that replace selection of best performing individuals with selection of the most novel ones. Such methods have already shown promising results on hard exploration problems. In this work, we introduce a new NS-based method that can generate large datasets of grasping trajectories in a platform-agnostic manner. Inspired by the hierarchical learning paradigm, our method decouples approach and prehension to make the behavioral space smoother. Experiments conducted on 3 different robot-gripper setups and on several standard objects shows that our method outperforms state-of-the-art for generating diverse repertoire of grasping trajectories, getting a higher successful run ratio, as well as a better diversity for both approach and prehension. Some of the generated solutions have been successfully deployed on a real robot, showing the exploitability of the obtained repertoires.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源