论文标题
ENTS:用于协作边缘计算的边缘本地任务调度系统
ENTS: An Edge-native Task Scheduling System for Collaborative Edge Computing
论文作者
论文摘要
协作边缘计算(CEC)是一种新兴范式,可在异质地理分布的边缘节点之间共享耦合数据,计算和网络资源。最近,在CEC中编排和安排容器化的应用程序工作负载的趋势,而Kubernetes已成为行业和学术界广泛采用的事实上的标准。但是,对于CEC而言,Kubernetes并不是可取的,因为其设计并非专门用于边缘计算,而忽略了边缘诞生的独特功能。更具体地说,Kubernetes主要确保资源提供工作负载,同时忽略了边缘新应用程序的性能要求,例如吞吐量和延迟。此外,Kubernetes忽略了边缘本地应用的内部依赖性,并且无法考虑数据局部性和网络资源,从而导致性能较低。在这项工作中,我们设计和开发了第一个边缘本地任务调度系统,以管理分布式边缘资源并促进有效的任务计划以优化边缘本地应用程序的性能。 Ents通过全面考虑工作配置文件和资源状态来扩展Kubernetes,具有独特的能力来协作计算和网络资源。我们通过有关数据流应用程序的案例研究展示了ENTS的出色功效。我们在数学上制定了一个联合任务分配和流程调度问题,从而最大程度地提高了作业吞吐量。我们设计了两种新颖的在线调度算法,以最佳决定任务分配,带宽分配和流程路由策略。现实世界中边缘视频分析应用程序上的广泛实验表明,与最先进的ART相比,ENT的平均工作吞吐量高43 \%-220 \%。
Collaborative edge computing (CEC) is an emerging paradigm enabling sharing of the coupled data, computation, and networking resources among heterogeneous geo-distributed edge nodes. Recently, there has been a trend to orchestrate and schedule containerized application workloads in CEC, while Kubernetes has become the de-facto standard broadly adopted by the industry and academia. However, Kubernetes is not preferable for CEC because its design is not dedicated to edge computing and neglects the unique features of edge nativeness. More specifically, Kubernetes primarily ensures resource provision of workloads while neglecting the performance requirements of edge-native applications, such as throughput and latency. Furthermore, Kubernetes neglects the inner dependencies of edge-native applications and fails to consider data locality and networking resources, leading to inferior performance. In this work, we design and develop ENTS, the first edge-native task scheduling system, to manage the distributed edge resources and facilitate efficient task scheduling to optimize the performance of edge-native applications. ENTS extends Kubernetes with the unique ability to collaboratively schedule computation and networking resources by comprehensively considering job profile and resource status. We showcase the superior efficacy of ENTS with a case study on data streaming applications. We mathematically formulate a joint task allocation and flow scheduling problem that maximizes the job throughput. We design two novel online scheduling algorithms to optimally decide the task allocation, bandwidth allocation, and flow routing policies. The extensive experiments on a real-world edge video analytics application show that ENTS achieves 43\%-220\% higher average job throughput compared with the state-of-the-art.