论文标题
在次球状态下随机电导中有偏见的随机步行的猝灭不变性原理
Quenched invariance principle for biased random walks in random conductances in the sub-ballistic regime
论文作者
论文摘要
我们考虑在$ \ mathbb {z}^d $上进行偏见的随机步行,以$ d \ geq 5 $。在次级核心方案中,我们证明了正确重新缩放的随机步行朝向分数动力学的散落。
We consider a biased random walk in positive random conductances on $\mathbb{Z}^d$ for $d\geq 5$. In the sub-ballistic regime, we prove the quenched convergence of the properly rescaled random walk towards a Fractional Kinetics.