论文标题
免费微调:深神经网络的插件水印方案
Free Fine-tuning: A Plug-and-Play Watermarking Scheme for Deep Neural Networks
论文作者
论文摘要
水印已被广泛用于保护深神经网络(DNN)的知识产权(IP)以捍卫未经授权的分布。不幸的是,流行的DATA-POISON DNN水印方案依靠目标模型来嵌入水印,这限制了其在解决现实世界任务时的实际应用。具体而言,通过有毒数据集(精心制作的样品 - 标签对)进行乏味的模型来学习水印并不能有效地解决挑战性数据集和生产级DNN模型保护的任务。为了解决上述局限性,在本文中,我们通过将独立的专有模型注入目标模型,以服务于水印嵌入和所有权验证,为DNN模型提出了插入水印方案。与先前的研究相反,通过合并专有模型,我们提出的方法无需涉及目标模型的任何参数更新,因此可以很好地保留忠诚度。我们的研究发现表明,使用中毒数据的微型模型并未准备用于对现实世界任务中部署的DNN模型的IP保护,并为对采用DNN水印的专有模型提供了新的研究方向。源代码和模型可在https://github.com/antigonerandy/ptynet上找到。
Watermarking has been widely adopted for protecting the intellectual property (IP) of Deep Neural Networks (DNN) to defend the unauthorized distribution. Unfortunately, the popular data-poisoning DNN watermarking scheme relies on target model fine-tuning to embed watermarks, which limits its practical applications in tackling real-world tasks. Specifically, the learning of watermarks via tedious model fine-tuning on a poisoned dataset (carefully-crafted sample-label pairs) is not efficient in tackling the tasks on challenging datasets and production-level DNN model protection. To address the aforementioned limitations, in this paper, we propose a plug-and-play watermarking scheme for DNN models by injecting an independent proprietary model into the target model to serve the watermark embedding and ownership verification. In contrast to the prior studies, our proposed method by incorporating a proprietary model is free of target model fine-tuning without involving any parameters update of the target model, thus the fidelity is well preserved. Our research findings reveal that model fine-tuning with poisoned data is not prepared for the IP protection of DNN models deployed in real-world tasks and poses a new research direction toward a more thorough understanding and investigation of adopting the proprietary model for DNN watermarking. The source code and models are available at https://github.com/AntigoneRandy/PTYNet.