论文标题
修改第二代时间延迟干涉法的组合代数方法
A combinatorial algebraic approach for the modified second-generation time-delay interferometry
论文作者
论文摘要
我们概括了Dhurandhar等人首先提出的组合代数方法。构建各种修改的第二代时间延迟干涉法(TDI)解决方案。该算法背后的主要思想是,在给定的顺序中列举了由特定时间置换式运算符产品定义的两个单元之间的特定类型的换向器。一方面,可以系统地重写上述换向器,为左侧理想的元素,由L.H.S.定义。 TDI解的相关方程。另一方面,如果我们仅保留有关臂章变化率的一阶贡献,这些换向器就会消失。换句话说,每个换向器都提供与给定类型的修改第二代组合有关的有效TDI解决方案。在这项工作中,仅涉及时间延迟运算符的原始算法通过引入时间预付款,然后用于寻求信标的解决方案,继电器,监视,Sagnac和完全对称的Sagnac类型。我们讨论了本方案的解决方案与通过几何TDI方法获得的解决方案之间的关系,几何TDI方法是一种众所周知的虚拟光学路径耗尽方法。特别是,我们报告了新型SAGNAC启发的溶液的结果,这些溶液无法直接使用几何TDI算法获得。评估获得的溶液的平均响应函数,地板噪声功率密度和灵敏度函数。
We generalize the combinatorial algebraic approach first proposed by Dhurandhar et al. to construct various classes of modified second-generation time-delay interferometry (TDI) solutions. The main idea behind the algorithm is to enumerate, in a given order, a specific type of commutator between two monomials defined by the products of particular time-displacement operators. On the one hand, the above commutators can be systematically rewritten as the elements of a left ideal, defined by the l.h.s. of the relevant equation for the TDI solution. On the other hand, these commutators are shown to vanish if we only keep up the first-order contributions regarding the rate of change of armlengths. In other words, each commutator furnishes a valid TDI solution pertaining to the given type of modified second-generation combinations. In this work, the original algorithm, which only involves time-delay operators, is extended by introducing the time-advance ones and then utilized to seek solutions of the Beacon, Relay, Monitor, Sagnac, and fully symmetric Sagnac types. We discuss the relation between the present scheme's solutions and those obtained by the geometric TDI approach, a well-known method of exhaustion of virtual optical paths. In particular, we report the results on novel Sagnac-inspired solutions that cannot be straightforwardly obtained using the geometric TDI algorithm. The average response functions, floor noise power spectral densities, and sensitivity functions are evaluated for the obtained solutions.