论文标题

ISCSLP 2022智能驾驶舱语音识别挑战的Levoice ASR系统

LeVoice ASR Systems for the ISCSLP 2022 Intelligent Cockpit Speech Recognition Challenge

论文作者

Jia, Yan, Hong, Mi, Hou, Jingyu, Ren, Kailong, Ma, Sifan, Wang, Jin, Peng, Fangzhen, Ji, Yinglin, Yang, Lin, Wang, Junjie

论文摘要

本文描述了Levoice自动语音识别系统,以跟踪智能驾驶舱语音识别挑战2022。TRACK2是一项语音识别任务,而没有限制模型大小的范围。我们的要点包括基于深度学习的语音增强,基于文本到语音的语音产生,通过各种技术和语音识别模型融合培训数据的增强。我们比较并融合了混合体系结构和两种端到端体系结构。对于端到端的建模,我们使用了基于连接主义者时间分类/基于注意的编码器架构的模型和经常性的神经网络传感器/基于注意的编码器decoder架构。这些模型的性能通过额外的语言模型评估,以提高单词错误率。结果,我们的系统在挑战测试集数据上达到了10.2 \%的字符错误率,在挑战中提交的系统中排名第三。

This paper describes LeVoice automatic speech recognition systems to track2 of intelligent cockpit speech recognition challenge 2022. Track2 is a speech recognition task without limits on the scope of model size. Our main points include deep learning based speech enhancement, text-to-speech based speech generation, training data augmentation via various techniques and speech recognition model fusion. We compared and fused the hybrid architecture and two kinds of end-to-end architecture. For end-to-end modeling, we used models based on connectionist temporal classification/attention-based encoder-decoder architecture and recurrent neural network transducer/attention-based encoder-decoder architecture. The performance of these models is evaluated with an additional language model to improve word error rates. As a result, our system achieved 10.2\% character error rate on the challenge test set data and ranked third place among the submitted systems in the challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源