论文标题

在线学习缓存并推荐下一代蜂窝网络

Online Learning to Cache and Recommend in the Next Generation Cellular Networks

论文作者

Krishnendu, S., Bharath, B. N., Bhatia, Vimal

论文摘要

可以通过准确预测文件的普及来实现有效的缓存。众所周知,可以通过使用建议来轻推文件的普及,因此可以准确地估算出有效的缓存策略。在本文中,我们考虑了5G和超越异质网络中联合缓存和建议的问题。我们通过概率过渡矩阵(PTM)对建议对需求的影响进行建模。提出的框架包括估计PTM并使用它们共同推荐和缓存文件。特别是,本文考虑了两种估计方法,即a)贝叶斯估计和b)精灵辅助点估计。提供了两种估计方法的遗憾的近似高概率。使用此结果,我们表明,Genie辅助点估计方法所获得的近似遗憾是$ \ Mathcal {o}(t^{2/3} \ sqrt {\ log t})$,而Bayesian估计方法实现了$ \ \ nathcal {o}(O}(O}(O)的比例更好。这些结果扩展到由带有中央宏基站的M小基站(SBS)组成的异质网络。这些估计值可在多个SBSS上获得,并使用适当的权重合并。通过使用多个SBS案件中的派生近似遗憾,可以提供有关这些权重的选择的见解。最后,模拟结果证实了所提出的算法的优势,从平均缓存命中率,延迟和吞吐量方面。

An efficient caching can be achieved by predicting the popularity of the files accurately. It is well known that the popularity of a file can be nudged by using recommendation, and hence it can be estimated accurately leading to an efficient caching strategy. Motivated by this, in this paper, we consider the problem of joint caching and recommendation in a 5G and beyond heterogeneous network. We model the influence of recommendation on demands by a Probability Transition Matrix (PTM). The proposed framework consists of estimating the PTM and use them to jointly recommend and cache the files. In particular, this paper considers two estimation methods namely a) Bayesian estimation and b) a genie aided Point estimation. An approximate high probability bound on the regret of both the estimation methods are provided. Using this result, we show that the approximate regret achieved by the genie aided Point estimation approach is $\mathcal{O}(T^{2/3} \sqrt{\log T})$ while the Bayesian estimation method achieves a much better scaling of $\mathcal{O}(\sqrt{T})$. These results are extended to a heterogeneous network consisting of M small base stations (sBSs) with a central macro base station. The estimates are available at multiple sBSs, and are combined using appropriate weights. Insights on the choice of these weights are provided by using the derived approximate regret bound in the multiple sBS case. Finally, simulation results confirm the superiority of the proposed algorithms in terms of average cache hit rate, delay and throughput.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源