论文标题
机械系统的算法推理方法
An Operator Inference Oriented Approach for Mechanical Systems
论文作者
论文摘要
模型订购降低技术允许构建可以加速工程设计过程的低维替代模型。通常,这些技术是侵入性的,这意味着它们需要直接访问潜在的高保真模型。访问这些模型是费力的,在某些情况下甚至可能是不可能的。因此,人们有兴趣开发直接从模拟或实验数据直接构建低维模型的非侵入模型还原技术。在这项工作中,我们专注于最新的数据驱动方法,即操作员推断,旨在仅使用高保真模型的轨迹来推断降低的操作员。我们提出了对机械系统的操作推理的扩展,并保留了二阶结构。我们还研究了一个特定情况,其中有有关外力的完整信息。在此公式中,通过在优化问题中添加约束来强制实施具有原始系统矩阵启发的某些属性的减少运算符。我们使用三个数值示例说明了所提出的方法。
Model-order reduction techniques allow the construction of low-dimensional surrogate models that can accelerate engineering design processes. Often, these techniques are intrusive, meaning that they require direct access to underlying high-fidelity models. Accessing these models is laborious or may not even be possible in some cases. Therefore, there is an interest in developing non-intrusive model reduction techniques to construct low-dimensional models directly from simulated or experimental data. In this work, we focus on a recent data-driven methodology, namely operator inference, that aims at inferring the reduced operators using only trajectories of high-fidelity models. We present an extension of operator inference for mechanical systems, preserving the second-order structure. We also study a particular case in which complete information about the external forces is available. In this formulation, the reduced operators having certain properties inspired by the original system matrices are enforced by adding constraints to the optimization problem. We illustrate the presented methodology using three numerical examples.