论文标题

机械振荡器的光学相干反馈控制

Optical coherent feedback control of a mechanical oscillator

论文作者

Ernzer, Maryse, Aguilera, Manel Bosch, Brunelli, Matteo, Schmid, Gian-Luca, Karg, Thomas M., Bruder, Christoph, Potts, Patrick P., Treutlein, Philipp

论文摘要

反馈是经典和量子系统控制中的一种强大而普遍存在的技术。它的标准实现依赖于测量系统状态,处理经典信号并将其馈回系统。但是,在量子物理学中,测量不仅读取了系统状态,而且可以不可逆地修改它。连贯的反馈是另一种反馈,它连贯地处理和反馈量子信号,而无需实际测量系统。在这里,我们报告了光学相干反馈平台的实验实现和理论分析,以控制光腔中纳米力学膜的运动状态。相干反馈环由一个光场通过不同的腔模式与相同的机械模式相互作用的光场组成,而无需{执行任何测量}。调整反馈回路的光相和延迟,使我们能够控制机械振荡器的运动状态,其共振频率以及其阻尼速率,我们将其用于冷却接近量子基态状态的膜。我们的理论分析提供了最佳的冷却条件,这表明这种新技术可实现地面冷却。在实验上,我们表明我们可以将膜冷却到$ \ bar {n} _m = 4.89 \ pm 0.14 $ phonons($ {480} \,{μ\ mathrm {k}}} $)中,在$ {20}} \,\,\ mathrm {k k} $ {这在未解决的边带机制中的腔动力反向冷却的理论限制以下,只有1 $ \%$ $ \%的光学功率才能实现。我们的反馈方案非常通用,为各种光学机械系统提供了量子控制的新机会。

Feedback is a powerful and ubiquitous technique both in classical and quantum system control. Its standard implementation relies on measuring the state of a system, processing the classical signal, and feeding it back to the system. In quantum physics, however, measurements not only read out the state of the system but also modify it irreversibly. Coherent feedback is a different kind of feedback that coherently processes and feeds back quantum signals without actually measuring the system. Here, we report on the experimental realization and the theoretical analysis of an optical coherent feedback platform to control the motional state of a nanomechanical membrane in an optical cavity. The coherent feedback loop consists of a light field interacting twice with the same mechanical mode through different cavity modes, without {performing any} measurement. Tuning the optical phase and delay of the feedback loop allows us to control the motional state of the mechanical oscillator, its resonance frequency and also its damping rate, which we use to cool the membrane close to the quantum ground state. Our theoretical analysis provides the optimal cooling conditions, showing that this new technique enables ground-state cooling. Experimentally, we show that we can cool the membrane to a state with $\bar{n}_m = 4.89 \pm 0.14 $ phonons (${480}\,{μ\mathrm{K}}$) in a ${20}\,\mathrm{K}$ environment. This lies below the theoretical limit of cavity dynamical backaction cooling in the unresolved sideband regime and is achieved with only 1$\%$ of the optical power required for cavity cooling. Our feedback scheme is very versatile, offering new opportunities for quantum control in a variety of optomechanical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源